
CS 61A
DISCUSSION 1

CONTROL, ENVIRONMENTS, AND HIGHER ORDER
FUNCTIONS

Raymond Chan
Discussion 134

UC Berkeley Fall 16

AGENDA

• Announcements

• If statements

• Boolean operators

• While loops

• Environment Diagrams

ANNOUNCEMENTS

• Lab 01 due Friday

• Homework 01 due Tonight

• Project 1 Hog is released. Due Thu 9/8

IF STATEMENTS

• Execute different code based on different conditions

• Evaluates conditional expressions with the bool function to
True or False values

• Boolean operators, comparing numbers (3 == 5; x > 3)

if <conditional expr>:
 <suite of statements>
elif <conditional expr>:
 <suite of statements>

else:
 <suite of statements>

<rest of code>

IF STATEMENTS

• The suite that is indented under the first if/elif with a True
conditional is evaluated.

• If all the conditionals fail, the suite under else is evaluated.

• There is only one else clause.

if <conditional expr>:
 <suite of statements>
elif <conditional expr>:
 <suite of statements>

else:
 <suite of statements>

<rest of code>

IF STATEMENTS

• Execute different code based on different conditions

if <conditional>:
 <suite of statements>

elif <conditional>:
 <suite of statements>

else:
 <suite of statements>

<rest of code>

if <conditional>:
 <suite of statements>

if <conditional>:
 <suite of statements>

if <conditional>:
 <suite of statements>

<rest of code>

BOOLEAN OPERATORS

• not: returns the opposite

• always returns True or False

• and: evaluates and returns the first False expression

• if all True -> evaluates and returns the last expression

• or: evaluates and returns the first True expression

• if all False -> evaluates and returns the last expression

BOOLEAN OPERATORS

• and/or uses the bool(x) function to determine True/False
values

• do not have to return True/False

• False values: False, 0, None, “”, []…

• True values: True, non-zero integers, almost everything
else

WHILE LOOPS

• As long as the conditional evaluates to True, the body is
executed

• Watch out for infinite loops!

• Within the body, the conditional needs to change after each
iteration

while <conditional>:
 <body>

i = 0
while i < n:
 <body>
 …
 i = i + 1

ENVIRONMENT DIAGRAMS

• Environment diagrams allow us to keep track of variables
that have been defined and the values they are bound to.

• Visualization of the execution of Python code.

• Assignment Statements

• Def Statements

• Function Calls

ASSIGNMENT STATEMENTS

• Evaluate the expression on the right hand side of the = sign.

• Look up names in the current frame. If it does not exist,
look up in the parent frame.

• Evaluate primitive expressions and operations

ASSIGNMENT STATEMENTS

• If the variable name on the left hand side of ‘=‘ does not
exist, create it in the current local frame.

• Write the expression value next to the variable name.

• If the variable already exists, cross out and replace the
current value with the evaluated value.

ASSIGNMENT STATEMENTS

• Variable assignments on the right hand side only checks for
variables in the local frame.

• If the expression is a function, draw a reference arrow from
the variable name to the function object.

DEF STATEMENTS

• Create the function object with the function signature and
parent frame.

• The parent frame is the frame in which the frame is defined.

DEF STATEMENTS

• Use a reference arrow to bind the function name to the
function object.

• Do not evaluate the body of the function at this time.

DEF STATEMENTS

• Function signature contains the function’s intrinsic name and
the formal parameters.

CALL EXPRESSIONS

• Evaluate the operator.

• Evaluate the operands from left to right.

CALL EXPRESSIONS

• Apply the evaluated operands on the operator.

• Create a new frame.

CALL EXPRESSIONS

• Apply the evaluated operands on the operator.

• Draw a new frame with a unique frame index, the function’s
intrinsic name, and the parent frame.

CALL EXPRESSIONS

• Bind the formal parameters to the argument(s) passed in.

• Evaluate the body of the function.

CALL EXPRESSIONS

• Remember to denote the return value. If a function does not
return anything, the return value is by default None.

• If we are assigning a variable to a call expression, assign the
return value to the variable in the frame of the call
expression.

FUNCTION CALL VS. FUNCTION

• Variables can be assigned to the return value of a function
call or to a function object itself.

• Variables are assigned to the result of evaluating the right
hand side, which could be a reference to a function.

HIGHER ORDER FUNCTIONS

• Function that manipulates other functions by:

• Taking functions as arguments,

• Returning a function, or

• Both.

HIGHER ORDER FUNCTIONS

• Function arguments can be other functions.

• Pass in the name of the function.

• Don’t make a function call.

def square(x):
 return x * x

def negate(f, x):
 return -f(x)

>>> negate(square, 5)
25

HIGHER ORDER FUNCTIONS

• Functions can also return other functions

• Return function name.

• Or can be a function call that returns a function.
def f(x):
 z = 6
 def g(y):
 return x * y + 6
 return g

>>> f(5)(5)
25

def h(z):
 return f(z)

>>> h(10)(5)
50

