CS 61A
DISCUSSION 2

ENVIRONMENT DIAGRAMS AND RECURSION

Raymond Chan
Discuss ion 134
UC Berkeley Fall 16

Announcements

Environment diagram review

Lambda

Recursion

ANNOUNCEMENTS

Project 1 Hog due tonight!!
Lab 2 due Friday
Homework 3 due Tuesday 9/13

Guerrilla Section on Higher Order Functions & Recursion 9/10
noon - 3pm

CSM small group tutoring sections sign ups

MIDTERM ANNOUNCEMENTS

Midterm 1 next Thursday 9/15 8-10pm. Rooms TBD
Topical Office Hours next week
TA-led review session noon - 3pm Sunday 155 Dwindle

HKN review session 2 -5 pm Saturday 2050 VLSB

MORE ANNOUNCEMENTS

» Based on demand, | will hold at least one of the following (or

both)

* Review session to go over past exam problems Sunday 4-6pm
Soda 320 (this may change)

» Office Hour before midterm Thursday during discussion time
(no discussion next week)

ENVIRONMENT DIAGRAMS

Environment diagrams allow us to keep track of variables
that have been defined and the values they are bound to.

Assignment Statements
Def Statements
Function Calls

Lambda Expressions

ASSIGNMENT STATEMENTS
REVIEW

» Evaluate right hand side.

* Look up names in the current frame, and then parent

frame.

 Left hand side variable created in local frame if it does not
exist.

Xx =5 Global frame func square(x) [parent=G]T
def square(x): x |5
return x**2 e
S

S = square

R — — S ——

DEF STATEMENTS
REVIEW

* Function object has function signature (intrinsic name and
formal parameters) and parent frame.

* The parent frame is the frame in which the frame is defined.

* Do not evaluate body.

X =5
def square(x):
return x**2 Global frame

func square(x) [parent=Global]
_ XS/
square

CALL EXPRESSIONS
REVIEW

» Evaluate the operator, then operands from left to right.

* Apply evaluated operands to operator and create new frame
with intrinsic name.

» Bind arguments to formal parameters.

5 Global frame

square (x): y 5(///
square

return x**2
z 25

square(y)

——

éfl: square [parent=Global]

X |5

Return
value

FUNCTION CALL VS. FUNCTION OBJECTS
REVIEW

* Function calls have parenthesis after variable that is bound to
function object.

Global frame func A(x)
square
four 4
f

nine 9

square = lambda x: x * X
four = square(2)

f = square fl: A <line 1> [parent=Global]
nine = f(3) X |2

Return
value

f2: A <line 1> [parent=Global]
X |3

Return
value

LAMBDA FUNCTIONS

lambda <parameters>: <body>

There can be multiple parameters delimited by commas.

e lambda x, y, z: <body>

Lambda functions create function objects with the function

name as A.

Create the function object in the environment diagram even
if it is not assigned to a variable.

LAMBDA FUNCTIONS

Lambda functions cannot be accessed if it is not assigned to
variables either by

* using an explicit assignment statement or

passing the lambda function into another function’s
argument.

Global frame func <line 1> [parent=Global]
square = lambda x: X * X ‘////”—%>
square

def f(x): .////————%bfunc [parent=Global]
f

def g(y, z):
return x(y, z) func , b) <line 7> [parent=Global]

return g éfl: f [parent=Global]

func , Z) [parent=f1l]
X
f(lambda a, b: a + b)
' Return
value

LAMBDA FUNCTIONS

* Remember what frame you are in when creating lambda

functions.

» Vital to the lambda’s parent frame.

square = lambda x: x * X

def f(x):

def g(y, z):
return x(y, z)

return g

f(lambda a,

b:

a + b)

R ———

T

Global frame .////,,——>$unc
square
ﬁfunc
f‘

func

éfl: f [parent=Global]
: func
X
g .
Return
value

<line 1> [parent=Global]

[parent=Global]

, b) <line 7> [parent=Global]

, Z) [parent=f1l]

LAMBDA FUNCTIONS

» Passing in newly defined lambda functions in a function call

always creates the lambda object in the frame where the call

expression is.

square = lambda x: x * X
def f(x):
def g(y, z):
return x(y, z)
return g

f(lambda a, b: a + b)

— —

éfl: f [parent=Global]

Global frame .////,,——>$unc
square
ﬁfunc
f‘

func

func
X
g -
Return
value

<line 1> [parent=Global]

[parent=Global]

, b) <line 7> [parent=Global]

, Z) [parent=f1l]

RECURSION

* A recursive function is a function that calls itself.
* Three common steps
* Figure our your base case(s)

* Make the problem smaller and make a recursive call with
that simpler argument

* Use your recursive call to solve the full problem

RECURSION

» Base cases are there to stop the recursion.

* No base case —> continue making recursive calls forever

def factorial(n):
if n=—— 0 or n.—=
return 1
else:
return n * factorial(n-1)

RECURSION

Find a smaller problem for the recursive call.

Make sure the problem is getting smaller toward the base
case.

Call the recursive function with this smaller argument.

def factorial(n):
if n == 0 or n ==
return 1

else:
return n * factorial(n-1)

RECURSION

» Take the leap of faith and trust that your recursive function is
correct on the smaller argument.

* Knowing that the recursive call returns what you want, how
can you solve the bigger problem?

def factorial(n):
3f == 0 or n.-—=
return |
else:

return n * factorial(n-1)

RECURSION

factorial(5)

RECURSION

factorial(5)

5 * factorial(4)

RECURSION

factorial(5)

5 * factorial(4)

4 * tactorial(3)

RECURSION

factorial(5)
5 * factorial(4)
4 * tactorial(3)

3 * factorial(2)

RECURSION

factorial(5)

5 * factorial(4)
4 * tactorial(3)
3 * factorial(2)

2 * factorial(1)

RECURSION

factorial(5)

5 * factorial(4)
4 * tactorial(3)
3 * factorial(2)

2 * factorial(1)

RECURSION

factorial(5)

5 * factorial(4)
4 * tactorial(3)
3 * factorial(2)

2 * factorial(1)

RECURSION

factorial(5)

5 * factorial(4)
4 * tactorial(3)
3 * factorial(2)

2 * factorial(1)

RECURSION

factorial(5)

5 * factorial(4)
4 * tactorial(3)
3 * factorial(2)

2 * factorial(1)

RECURSION

factorial(5)

5 * factorial(4)
4 * tactorial(3)
3 * factorial(2)

2 * factorial(1)

RECURSION

factorial(5)

5 * factorial(4)
4 * tactorial(3)
3 * factorial(2)

2 * factorial(1)

TREE RECURSION

e Recursive functions that make more than one recursive call in
Its recursive case.

Example: fibonacci sequence

def fib(n):
it n.—= 0:
return 0
elif n —= "1:
return |

else:
return fib(n - 1) .+ fib(n — 29

TREE RECURSION

e Recursive functions that make more than one recursive call in
Its recursive case

fib(4)

TREE RECURSION

e Recursive functions that make more than one recursive call in
Its recursive case

fib(4)

TREE RECURSION

e Recursive functions that make more than one recursive call in
Its recursive case

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

TREE RECURSION

e Recursive functions that make more than one recursive call in
Its recursive case

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

TREE RECURSION

e Recursive functions that make more than one recursive call in
Its recursive case

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) + fib(0)
1

TREE RECURSION

e Recursive functions that make more than one recursive call in
Its recursive case

fib(4)

fib(3) fib(2)

fibl2) + dibt1)k tib{1} + Ffib(O)
B 1

fib(1) fib(0)

TREE RECURSION

e Recursive functions that make more than one recursive call in
Its recursive case

fib(4)

fib3) + fib2)

fib(2) fib(1) fib(1) fib(0)
B 1

fib(1) fib(0)

RECAP

Environment diagrams allow us to keep track of a variables
and their values.

Recursion functions call themselves.

Tree recursive functions call themselves multiple times from

one frame.

