
CS 61A
DISCUSSION 2

ENVIRONMENT DIAGRAMS AND RECURSION

Raymond Chan
Discussion 134

UC Berkeley Fall 16

AGENDA

• Announcements

• Environment diagram review

• Lambda

• Recursion

ANNOUNCEMENTS

• Project 1 Hog due tonight!!

• Lab 2 due Friday

• Homework 3 due Tuesday 9/13

• Guerrilla Section on Higher Order Functions & Recursion 9/10
noon - 3pm

• CSM small group tutoring sections sign ups

MIDTERM ANNOUNCEMENTS

• Midterm 1 next Thursday 9/15 8-10pm. Rooms TBD

• Topical Office Hours next week

• TA-led review session noon - 3pm Sunday 155 Dwindle

• HKN review session 2 - 5 pm Saturday 2050 VLSB

MORE ANNOUNCEMENTS

• Based on demand, I will hold at least one of the following (or
both)

• Review session to go over past exam problems Sunday 4-6pm
Soda 320 (this may change)

• Office Hour before midterm Thursday during discussion time
(no discussion next week)

ENVIRONMENT DIAGRAMS

• Environment diagrams allow us to keep track of variables
that have been defined and the values they are bound to.

• Assignment Statements

• Def Statements

• Function Calls

• Lambda Expressions

REVIEW

ASSIGNMENT STATEMENTS

• Evaluate right hand side.

• Look up names in the current frame, and then parent
frame.

• Left hand side variable created in local frame if it does not
exist.

REVIEW

DEF STATEMENTS

• Function object has function signature (intrinsic name and
formal parameters) and parent frame.

• The parent frame is the frame in which the frame is defined.

• Do not evaluate body.

REVIEW

CALL EXPRESSIONS

• Evaluate the operator, then operands from left to right.

• Apply evaluated operands to operator and create new frame
with intrinsic name.

• Bind arguments to formal parameters.

REVIEW

FUNCTION CALL VS. FUNCTION OBJECTS

• Function calls have parenthesis after variable that is bound to
function object.

LAMBDA FUNCTIONS

• lambda <parameters>: <body>

• There can be multiple parameters delimited by commas.

• lambda x, y, z: <body>

• Lambda functions create function objects with the function
name as λ.

• Create the function object in the environment diagram even
if it is not assigned to a variable.

LAMBDA FUNCTIONS

• Lambda functions cannot be accessed if it is not assigned to
variables either by

• using an explicit assignment statement or

• passing the lambda function into another function’s
argument.

LAMBDA FUNCTIONS

• Remember what frame you are in when creating lambda
functions.

• Vital to the lambda’s parent frame.

LAMBDA FUNCTIONS

• Passing in newly defined lambda functions in a function call
always creates the lambda object in the frame where the call
expression is.

RECURSION

• A recursive function is a function that calls itself.

• Three common steps

• Figure our your base case(s)

• Make the problem smaller and make a recursive call with
that simpler argument

• Use your recursive call to solve the full problem

RECURSION

• Base cases are there to stop the recursion.

• No base case —> continue making recursive calls forever

def factorial(n):
 if n == 0 or n == 1:
 return 1
 else:
 return n * factorial(n-1)

RECURSION

• Find a smaller problem for the recursive call.

• Make sure the problem is getting smaller toward the base
case.

• Call the recursive function with this smaller argument.

def factorial(n):
 if n == 0 or n == 1:
 return 1
 else:
 return n * factorial(n-1)

RECURSION

• Take the leap of faith and trust that your recursive function is
correct on the smaller argument.

• Knowing that the recursive call returns what you want, how
can you solve the bigger problem?

def factorial(n):
 if n == 0 or n == 1:
 return 1
 else:
 return n * factorial(n-1)

RECURSION

factorial(5)

RECURSION

factorial(5)

5 * factorial(4)

RECURSION

factorial(5)

5 * factorial(4)

4 * factorial(3)

RECURSION

factorial(5)

5 * factorial(4)

4 * factorial(3)

3 * factorial(2)

RECURSION

factorial(5)

5 * factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

RECURSION

factorial(5)

5 * factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1

RECURSION

factorial(5)

5 * factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1

2 * 1

RECURSION

factorial(5)

5 * factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1

2 * 1

3 * 2

RECURSION

factorial(5)

5 * factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1

2 * 1

3 * 2

4 * 6

RECURSION

factorial(5)

5 * factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1

2 * 1

3 * 2

4 * 6

5 * 24

RECURSION

factorial(5)

5 * factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1

2 * 1

3 * 2

4 * 6

5 * 24

120

TREE RECURSION

• Recursive functions that make more than one recursive call in
its recursive case.

• Example: fibonacci sequence

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n - 1) + fib(n - 2)

TREE RECURSION

• Recursive functions that make more than one recursive call in
its recursive case

fib(4)

TREE RECURSION

• Recursive functions that make more than one recursive call in
its recursive case

fib(4)

fib(3) fib(2)

TREE RECURSION

• Recursive functions that make more than one recursive call in
its recursive case

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

TREE RECURSION

• Recursive functions that make more than one recursive call in
its recursive case

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

TREE RECURSION

• Recursive functions that make more than one recursive call in
its recursive case

fib(4)

fib(3) fib(2)

+

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)
1

TREE RECURSION

• Recursive functions that make more than one recursive call in
its recursive case

fib(4)

fib(3) fib(2)

+fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)
1

2 1
+

TREE RECURSION

• Recursive functions that make more than one recursive call in
its recursive case

fib(4)

fib(3) fib(2)+

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)
1

2 1

3

RECAP

• Environment diagrams allow us to keep track of a variables
and their values.

• Recursion functions call themselves.

• Tree recursive functions call themselves multiple times from
one frame.

