
CS 61A
DISCUSSION 3

TREES AND SEQUENCES

Raymond Chan
Discussion 134

UC Berkeley Fall 16

AGENDA

• Announcements

• Lists

• List Comprehension

• Trees

• Appendix

• Data Abstraction

ANNOUNCEMENTS

• Midterm 1 Regrade Requests via Gradescope by Sunday.

• Homework 4 due tonight.

• Homework 5 due 9/27, next Tues.

• Lab 4 due Friday.

SEQUENCES

• Ordered collection of values

• Length

• Element Selection

LIST

• Sequence - order collection of values

• Python list is a type of sequence of whatever values we want.

• numbers, strings, functions, lists

• Create a list using [] (square brackets).

• [1, 2, 3, 4, 5]

• List content can contain different types.

• [1, “two”, lambda : 3, 4, True]

LIST

• We can access, or index, any element with square brackets.

• Lists are zero-indexed.

• First element is at index 0

• i-th element is indexed at i -1

• Can have negative index

• If a list has a length of n, we can index from -n to n -1.

LIST

• We can access, or index, any element with square brackets.

• Lists are zero-indexed.

• First element is at index 0

• i-th element is indexed at i -1

• Can have negative index

• If a list has a length of n, we can index from -n to n -1.

>>> L = [1, 2, 3, 4, 5]
>>> L[0]

LIST

• We can access, or index, any element with square brackets.

• Lists are zero-indexed.

• First element is at index 0

• i-th element is indexed at i -1

• Can have negative index

• If a list has a length of n, we can index from -n to n -1.

>>> L = [1, 2, 3, 4, 5]
>>> L[0]
1

LIST

• We can access, or index, any element with square brackets.

• Lists are zero-indexed.

• First element is at index 0

• i-th element is indexed at i -1

• Can have negative index

• If a list has a length of n, we can index from -n to n -1.

>>> L = [1, 2, 3, 4, 5]
>>> L[0]
1
>>> L[3]

LIST

• We can access, or index, any element with square brackets.

• Lists are zero-indexed.

• First element is at index 0

• i-th element is indexed at i -1

• Can have negative index

• If a list has a length of n, we can index from -n to n -1.

>>> L = [1, 2, 3, 4, 5]
>>> L[0]
1
>>> L[3]
4

LIST

• We can access, or index, any element with square brackets.

• Lists are zero-indexed.

• First element is at index 0

• i-th element is indexed at i -1

• Can have negative index

• If a list has a length of n, we can index from -n to n -1.

>>> L = [1, 2, 3, 4, 5]
>>> L[0]
1
>>> L[3]
4
>>> L[5]

LIST

• We can access, or index, any element with square brackets.

• Lists are zero-indexed.

• First element is at index 0

• i-th element is indexed at i -1

• Can have negative index

• If a list has a length of n, we can index from -n to n -1.

>>> L = [1, 2, 3, 4, 5]
>>> L[0]
1
>>> L[3]
4
>>> L[5]
Index OutOfBounds Error

LIST

• We can access, or index, any element with square brackets.

• Lists are zero-indexed.

• First element is at index 0

• i-th element is indexed at i -1

• Can have negative index

• If a list has a length of n, we can index from -n to n -1.

>>> L = [1, 2, 3, 4, 5]
>>> L[0]
1
>>> L[3]
4
>>> L[5]
Index OutOfBounds Error
>>> L[-4]

LIST

• We can access, or index, any element with square brackets.

• Lists are zero-indexed.

• First element is at index 0

• i-th element is indexed at i -1

• Can have negative index

• If a list has a length of n, we can index from -n to n -1.

>>> L = [1, 2, 3, 4, 5]
>>> L[0]
1
>>> L[3]
4
>>> L[5]
Index OutOfBounds Error
>>> L[-4]
2

LIST

• With multiple lists, we can concatenated them
together using +

>>> odds = [1, 3, 5, 7]
>>> evens = [2, 4, 6]
>>> odds + evens
[1, 3, 5, 7, 2, 4, 6]

LIST

• To obtain the length of a sequence, use the len
built-in function

>>> odds = [1, 3, 5, 7]
>>> len(odds)
4
>>> odds[len(odds) - 1]
7

LIST

• Check if an element exists in a list with in

• Cannot look into nested lists

>>> odds = [1, 3, 5, 7]
>>> 5 in odds
True
>>> 3 in odds
False

>>> lst = [1, [2, 3], 5, 7]
>>> 3 in lst
False

LIST

>>> a = [1, 5, 4, [2, 3], 3]
>>> print(a[0], a[-1])

>>> len(a)

>>> 2 in a

>>> 4 in a

>>> a[3][0]

WHAT WOULD PYTHON PRINT?

LIST

>>> a = [1, 5, 4, [2, 3], 3]
>>> print(a[0], a[-1])
1 3
>>> len(a)

>>> 2 in a

>>> 4 in a

>>> a[3][0]

WHAT WOULD PYTHON PRINT?

LIST

>>> a = [1, 5, 4, [2, 3], 3]
>>> print(a[0], a[-1])
1 3
>>> len(a)
5
>>> 2 in a

>>> 4 in a

>>> a[3][0]

WHAT WOULD PYTHON PRINT?

LIST

>>> a = [1, 5, 4, [2, 3], 3]
>>> print(a[0], a[-1])
1 3
>>> len(a)
5
>>> 2 in a
False
>>> 4 in a

>>> a[3][0]

WHAT WOULD PYTHON PRINT?

Cannot look into nested list [2, 3]

LIST

>>> a = [1, 5, 4, [2, 3], 3]
>>> print(a[0], a[-1])
1 3
>>> len(a)
5
>>> 2 in a
False
>>> 4 in a
True
>>> a[3][0]

WHAT WOULD PYTHON PRINT?

LIST

>>> a = [1, 5, 4, [2, 3], 3]
>>> print(a[0], a[-1])
1 3
>>> len(a)
5
>>> 2 in a
False
>>> 4 in a
True
>>> a[3][0]
2

WHAT WOULD PYTHON PRINT?

a[3] returns the nested list

LIST SLICING

• We can get a certain part of a list via slicing

• list[<start>:<stop>:<step>]

• Our new list beings at start, takes every step-th element (or jump
by step), and ends at index before stop.

• If it cannot reach stop, it will return an empty list.

• By default step is 1

• Slicing will always create a new list.

• step can be positive (go right) or negative (go left).

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]
>>> lst[-5: -2]

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]
>>> lst[-5: -2]
['1', 'a', ‘is']

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]
>>> lst[-5: -2]
['1', 'a', ‘is']
>>> lst[-3: -5]

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]
>>> lst[-5: -2]
['1', 'a', ‘is']
>>> lst[-3: -5]
[]

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]
>>> lst[-5: -2]
['1', 'a', ‘is']
>>> lst[-3: -5]
[]
>>> lst[-3:-5:-1]

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]
>>> lst[-5: -2]
['1', 'a', ‘is']
>>> lst[-3: -5]
[]
>>> lst[-3:-5:-1]
[‘is’, ‘a’]

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]
>>> lst[-5: -2]
['1', 'a', ‘is']
>>> lst[-3: -5]
[]
>>> lst[-3:-5:-1]
[‘is’, ‘a’]

>>> lst[4:2]

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]
>>> lst[-5: -2]
['1', 'a', ‘is']
>>> lst[-3: -5]
[]
>>> lst[-3:-5:-1]
[‘is’, ‘a’]

>>> lst[4:2]
[]

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]
>>> lst[-5: -2]
['1', 'a', ‘is']
>>> lst[-3: -5]
[]
>>> lst[-3:-5:-1]
[‘is’, ‘a’]

>>> lst[4:2]
[]
>>> lst[2:7]

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]
>>> lst[-5: -2]
['1', 'a', ‘is']
>>> lst[-3: -5]
[]
>>> lst[-3:-5:-1]
[‘is’, ‘a’]

>>> lst[4:2]
[]
>>> lst[2:7]
['6', '1', 'a', 'is', ‘so']

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]
>>> lst[-5: -2]
['1', 'a', ‘is']
>>> lst[-3: -5]
[]
>>> lst[-3:-5:-1]
[‘is’, ‘a’]

>>> lst[4:2]
[]
>>> lst[2:7]
['6', '1', 'a', 'is', ‘so']
>>> lst[2:7:-4]

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]
>>> lst[-5: -2]
['1', 'a', ‘is']
>>> lst[-3: -5]
[]
>>> lst[-3:-5:-1]
[‘is’, ‘a’]

>>> lst[4:2]
[]
>>> lst[2:7]
['6', '1', 'a', 'is', ‘so']
>>> lst[2:7:-4]
[]
>>> lst[:5]

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]
>>> lst[-5: -2]
['1', 'a', ‘is']
>>> lst[-3: -5]
[]
>>> lst[-3:-5:-1]
['is', 'a']

>>> lst[4:2]
[]
>>> lst[2:7]
['6', '1', 'a', 'is', ‘so']
>>> lst[2:7:-4]
[]
>>> lst[:5]
[‘c','s','6','1','a']

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]
>>> lst[-5: -2]
['1', 'a', ‘is']
>>> lst[-3: -5]
[]
>>> lst[-3:-5:-1]
['is', 'a']

>>> lst[4:2]
[]
>>> lst[2:7]
['6', '1', 'a', 'is', ‘so']
>>> lst[2:7:-4]
[]
>>> lst[:5]
[‘c’,'s','6','1','a']
>>> lst[7:]

LIST SLICING

>>> lst = ['c','s','6','1','a','is', 'so', 'fun']
>>> lst[3:6]
['1', 'a', ‘is']
>>> lst[3:100]
['1', 'a', 'is', 'so', ‘fun']
>>> lst[2:6:2]
['6', ‘a’]
>>> lst[-5: -2]
['1', 'a', ‘is']
>>> lst[-3: -5]
[]
>>> lst[-3:-5:-1]
['is', 'a']

>>> lst[4:2]
[]
>>> lst[2:7]
['6', '1', 'a', 'is', ‘so']
>>> lst[2:7:-4]
[]
>>> lst[:5]
[‘c’,'s','6','1','a']
>>> lst[7:]
['fun']

WHAT WOULD PYTHON PRINT?

LIST SLICING

>>> a =[3, 1, 4, 2, 5, 3]
>>> a[1::2]

>>> a[:]

>>> a[4:2]

>>> a[1:-2]

>>> a[::-1]

WHAT WOULD PYTHON PRINT?

LIST SLICING

>>> a =[3, 1, 4, 2, 5, 3]
>>> a[1::2]
[1, 2, 3]
>>> a[:]

>>> a[4:2]

>>> a[1:-2]

>>> a[::-1]

WHAT WOULD PYTHON PRINT?

LIST SLICING

>>> a =[3, 1, 4, 2, 5, 3]
>>> a[1::2]
[1, 2, 3]
>>> a[:]
[3, 1, 4, 2, 5, 3]
>>> a[4:2]

>>> a[1:-2]

>>> a[::-1]

Slicing always creates and returns a new list

WHAT WOULD PYTHON PRINT?

LIST SLICING

>>> a =[3, 1, 4, 2, 5, 3]
>>> a[1::2]
[1, 2, 3]
>>> a[:]
[3, 1, 4, 2, 5, 3]
>>> a[4:2]
[]
>>> a[1:-2]

>>> a[::-1]

Step by default is 1.
Cannot reach 2 from 4 when going right.

WHAT WOULD PYTHON PRINT?

LIST SLICING

>>> a =[3, 1, 4, 2, 5, 3]
>>> a[1::2]
[1, 2, 3]
>>> a[:]
[3, 1, 4, 2, 5, 3]
>>> a[4:2]
[]
>>> a[1:-2]
[1, 4, 2]
>>> a[::-1]

WHAT WOULD PYTHON PRINT?

LIST SLICING

>>> a =[3, 1, 4, 2, 5, 3]
>>> a[1::2]
[1, 2, 3]
>>> a[:]
[3, 1, 4, 2, 5, 3]
>>> a[4:2]
[]
>>> a[1:-2]
[1, 4, 2]
>>> a[::-1]
[3, 5, 2, 4, 1, 3]

Without passing start and stop, the defaults will
change with step.

WHAT WOULD PYTHON PRINT?

LIST SLICING

>>> a[::-1]
[3, 5, 2, 4, 1, 3]

• Default start and step changes with the sign of s.

• If s is a positive step, then lst[<start>:<step>:s] becomes
lst[0:len(lst):s].

• lst[<start>:<step>:-s] becomes lst[len(lst)-1: -(len(lst)+1) : -s]

• -(len(lst)+1) because we need to count backwards and cross the
0-th index.

FOR LOOPS

• Another method of iteration

• for <variable> in <sequence>

>>> lst [1, 2, 3]
>>> for x in lst:
… print(x)
1
2
3

>>> for i in range(0, 6):
… print(i)
0
1
2
3
4
5

>>> lst [1, 2, 3]
>>> for i in range(len(lst)):
… print(lst[i])
1
2
3

FOR LOOPS

• range(<start>, <stop>,<step>)

• Allows a for loop to iterate through a sequence from start up to
and excluding stop, taking every step-th element.

• Default step is 1.

• Default start is 0.

• Must have stop.

for i in range(0, 5, 2)
for i in range(2, 5)
for i range(5)

LIST COMPREHENSION

• Compact way to create a list

• [<map exp> for <name> in <iter exp> if <filter exp>]

• if clause is optional

nums = [1, 2, 3, 4, 5, 6, 7]
lst = []
for x in nums:
 if x % 2 == 0:
 lst += [x+3]

[x + 3 for x in nums if x % 2 == 0]

LIST COMPREHENSION

• Don’t use an else at the end.

• Move it to the expression.

• is a ternary expression

>>> [x + 3 for x in nums if x % 2 == 0 else 100]
Error
>>> [x + 3 if x % 2 == 0 else 100 for x in nums]
[5, 7, 9]

x + 3 if not x % 2 else 100

LIST COMPREHENSION

• Another way to see slicing

SLICING

>>> nums = [1, 2, 3, 4, 5, 6, 7]
>>> [nums[i] for i in range(1, 5, 2)]
[2, 4]
>>> nums[1:5:2]
[2, 4]

LIST COMPREHENSION
WHAT WOULD PYTHON PRINT?

>>> [i + 1 for i in [1, 2, 3, 4, 5] if i % 2 == 0]

>>> [i * i - i for i in [5, -1, 3, -1, 3] if i > 2]

>>>[[y * 2 for y in [x, x + 1]] for x in [1, 2, 3, 4]]

LIST COMPREHENSION
WHAT WOULD PYTHON PRINT?

>>> [i + 1 for i in [1, 2, 3, 4, 5] if i % 2 == 0]
[3, 5]
>>> [i * i - i for i in [5, -1, 3, -1, 3] if i > 2]

>>>[[y * 2 for y in [x, x + 1]] for x in [1, 2, 3, 4]]

LIST COMPREHENSION
WHAT WOULD PYTHON PRINT?

>>> [i + 1 for i in [1, 2, 3, 4, 5] if i % 2 == 0]
[3, 5]
>>> [i * i - i for i in [5, -1, 3, -1, 3] if i > 2]
[20, 6, 6]
>>>[[y * 2 for y in [x, x + 1]] for x in [1, 2, 3, 4]]

LIST COMPREHENSION
WHAT WOULD PYTHON PRINT?

>>> [i + 1 for i in [1, 2, 3, 4, 5] if i % 2 == 0]
[3, 5]
>>> [i * i - i for i in [5, -1, 3, -1, 3] if i > 2]
[20, 6, 6]
>>>[[y * 2 for y in [x, x + 1]] for x in [1, 2, 3, 4]]
[[2, 4], [4, 6], [6, 8], [8, 10]]

lst = []
for x in [1, 2, 3, 4]:
 for y in [x, x + 1]:
 lst += [[y * 2]]

LIST COMPREHENSION
WHAT WOULD PYTHON PRINT?

[[y * 2 for y in [x, x + 1]] for x in [1, 2, 3, 4]]

[x=1, x=2, x=3, x=4]

[[y * 2 for y in [1, 2], [y * 2 for y in [2, 3], …]

[[2, 4], [4, 6], [6, 8], [8, 10]]

lst = []
for x in [1, 2, 3, 4]:
 for y in [x, x + 1]:
 lst += [[y * 2]]

Nested list comprehension start with
outer variable.
Do inner list comprehension.

TREES

From John Denero

TREES

From John Denero’s Slides

• A tree has a root. The value of the root is called the root value.

• Each branch, or subtree, is a tree and it has a root.

• Nodes are the circle and the value is within.

• Leaf nodes have no branches (or children).

TREES

From John Denero’s Slides

• Except for the upper most root (3), every node in the tree has
only 1 parent.

• All nodes except for leaves have child(ren).

• Trees are recursive because subtrees and leaves are also trees.

TREES

From John Denero’s Slides

• The node of 3 is the parent of the node with 1 and node with 2.

• Simpler: 3 is the parent of 1 and 2, and 2 is the child of 3.

• Note: nodes are the circle, or position at the tree. You need to
actually get the value.

TREES

• The depth of a node is how far it is away from the root.

• Or count the number of edges from the root to the node.

TREES

• The depth of a node is how far it is away from the root.

• Or count the number of edges from the root to the node.

1

5 2 4

3 6 7

t
depth 0

depth 1

depth 2

TREES

• The height of a tree is the depth of the lowest leaves.

TREES

• The height of a tree is the depth of the lowest leaves.

height 2
1

5 2 4

3 6 7

t
depth 0

depth 1

depth 2

TREES

• Our tree(root, branches=[]) constructor is implemented via
Python Lists

t = tree(1,
[tree(5),
tree(2,

[tree(3)]),
tree(4,

[tree(6),
tree(7)])

])

1

5 2 4

3 6 7

t

TREES

• branches(t) returns a sequence of subtrees.

• We usually need to iterate over the branches and make
recursive calls for each subtree/branch.

TREES

• For tree questions, we typically do something with the root
of the tree and then for each of the tree’s branches, make the
recursive call.

• The smaller problems are the tree’s subtrees, which can be
accessed via the tree’s branches.

TREES

#Constructor
def tree(root, branches=[]):
 return [root] + list(branches)

#Selectors
def root(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

def is_leaf(tree):
 return not branches(tree)

tree creates a tree.
root obtains the value of the tree.
branches obtains a list of the tree’s branches.
is_leaf checks if the tree has no more branches.

TREES

Return a tree with the square of every element of t

def square_tree(t):

TREES

def square_tree(t):
 if is_leaf(t):
 return tree(root(t)**2)
 new_branches = []
 for branch in branches(t):
 new_branches += [square_tree(branch)]
 return tree(root(t)**2, new_branches)

TREES

- Base case is check if tree is a leaf.
- Since each branch is a subtree, we
need to make recursive calls to every branch.
- Leap of faith that square_tree(branch) returns
the subtree with values squared.def square_tree(t):

 if is_leaf(t):
 return tree(root(t)**2)
 new_branches = []
 for branch in branches(t):
 new_branches += [square_tree(branch)]
 return tree(root(t)**2, new_branches)

TREES

def square_tree(t):
 new_branches = []
 for branch in branches(t):
 new_branches += [square_tree(branch)]
 return tree(root(t)**2, new_branches)

• Notice that if there are no branches,
then the for loop does not iterative over anything.
• new_branches becomes an empty list, and
the return function would work.

TREES

Return a tree with the square of every element of t

def square_tree(t):
 new_branches = []
 for branch in branches(t):
 new_branches += [square_tree(branch)]
 return tree(root(t)**2, new_branches)

def square_tree(t):
 return tree(root(t)**2, [square_tree(branch) for branch in branches(t)])

TREES

Return the height of the tree

def height(t):

TREES

Return the height of the tree

def height(t):
 if is_leaf(t):
 return 0
 return 1 + max([height(branch) for branch in branches(t)])

TREES

def height(t):
 if is_leaf(t):
 return 0
 return 1 + max([height(branch) for branch in branches(t)])

• Since we now dealing with numbers,
we need to have base case check for
leaves.

RECAP

• Lists contain a sequence of values of which we can access via
indexing.

• List slicing creates a new list of a certain portion of the
original list.

• For loops are a way to iterate through sequences.

• List comprehension creates a new list in one line.

• Trees are recursive data structures that have root values and
maybe other trees as their children.

APPENDIX

• Data Abstraction

DATA ABSTRACTION

• Most of the time we need to work on code that was implemented
by someone else.

• Via data abstraction, we don’t need to worry about how the
implementation of the data.

• We just need to know how to use the data.

• Why is it useful?

DATA ABSTRACTION

• Why is it useful?

• If we were to change the implementation of a ADTs, we only need
to change the constructors and selectors.

• Any functions we wrote that used the selectors do not need to be
changed!

DATA ABSTRACTION

• We can treat data as abstract data types

• Constructors create these ADTs

• Selectors are used to retrieve information from ADTs

DATA ABSTRACTION

Constructor:
def make_city(city, latitude, longitude):
 return [city, latitude, longitude]

Selectors:
def get_name(city):
 return city[0]
def get_lat(city):
 return city[1]
def get_lon(city):
 return city[2]

DATA ABSTRACTION VIOLATIONS

• When we use the direct implementation of an ADT rather than its
selectors when writing functions, we are violating data abstraction
barriers!

• This is bad because we are making an assumption on how the
data is implemented.

DATA ABSTRACTION VIOLATIONS

• When we use the direct implementation of an ADT rather than its
selectors when writing functions, we are violating data abstraction
barriers!

def distance(city1, city2):
 lat_1, lon_1 = get_lat(city1), get_lon(city1)
 lat_2, lon_2 = get_lat(city2), get_lon(city2)
 return sqrt((lat_1 - lat_2)**2 + (lon_1 - lon_2)**2)

def distance(city1, city2):
 lat_1, lon_1 = city[1], city[2]
 lat_2, lon_2 = city[1], city[2]
 return sqrt((lat_1 - lat_2)**2 + (lon_1 - lon_2)**2)

DATA ABSTRACTION VIOLATIONS

• When we use the direct implementation of an ADT rather than its
selectors when writing functions, we are violating data abstraction
barriers!

def distance(city1, city2):
 lat_1, lon_1 = get_lat(city1), get_lon(city1)
 lat_2, lon_2 = get_lat(city2), get_lon(city2)
 return sqrt((lat_1 - lat_2)**2 + (lon_1 - lon_2)**2)

def distance(city1, city2):
 lat_1, lon_1 = city[1], city[2]
 lat_2, lon_2 = city[1], city[2]
 return sqrt((lat_1 - lat_2)**2 + (lon_1 - lon_2)**2)

BAD

GOOD

