CS 61A
DISCUSSION 3

TREES AND SEQUENCES

Raymond Chan
Discussion 134
UC Berkeley Fall 16

Announcements

Lists

List Comprehension

Trees

Appendix

« Data Abstraction

ANNOUNCEMENTS

Midterm 1 Regrade Requests via Gradescope by Sunday.
Homework 4 due tonight.

Homework 5 due 9/27, next Tues.

Lab 4 due Friday.

SEQUENCES

 QOrdered collection of values
* Length

e Element Selection

LIST

Sequence - order collection of values
Python list is a type of sequence of whatever values we want.
* numbers, strings, functions, lists

Create a list using [] (square brackets).

3 [1121 31 41 5]

List content can contain different types.

* [1, "two”, lambda : 3, 4, True]

LIST

* We can access, or index, any element with square brackets.
* Lists are zero-indexed.

* First element is at index 0

* i-th element is indexed at i -1
» Can have negative index

 If a list has a length of n, we can index from -nto n -1.

LIST

* We can access, or index, any element with square brackets.
s>sad =12 34 5]
* Lists are zero-indexed. >>> L[0]
* First element is at index 0
* i-th element is indexed at i -1

* Can have negative index

 If a list has a length of n, we can index from -nto n -1.

LIST

* We can access, or index, any element with square brackets.
s>sad =12 34 5]

 Lists are zero-indexed. >>> L[0]
1
 First element is at index O
 j-th element is indexed at i -1

* Can have negative index

 If a list has a length of n, we can index from -nto n -1.

LIST

* We can access, or index, any element with square brackets.

s>sad =12 34 5]
 Lists are zero-indexed. >>> L[0]
1

 First element is at index 0 >>> L[3]

* i-th element is indexed at i -1
* Can have negative index

 If a list has a length of n, we can index from -nto n -1.

LIST

* We can access, or index, any element with square brackets.

>>>1E =112 3.4 5]
* Lists are zero-indexed. >>> L[0]
1
S 3]
4

 First element is at index O
 j-th element is indexed at i -1
» Can have negative index

 If a list has a length of n, we can index from -nto n -1.

LIST

* We can access, or index, any element with square brackets.

>>>1E =112 3.4 5]
* Lists are zero-indexed. >>> L[0]
1
S 3]
4
>>= [|5]

 First element is at index O
 j-th element is indexed at i -1
» Can have negative index

 If a list has a length of n, we can index from -nto n -1.

LIST

* We can access, or index, any element with square brackets.

s>sad =12 34 5]
 Lists are zero-indexed. >>> L[0]
1

 First element is at index 0 >>> L[3]
4

>>> 5]

e j-th element is indexed at i -1 e GitofBet i B

* Can have negative index

 If a list has a length of n, we can index from -nto n -1.

LIST

* We can access, or index, any element with square brackets.

s>sad =12 34 5]
 Lists are zero-indexed. >>> L[0]
1
» First element is at index O === Li3]
4
>>> | [5]
Index OutOfBounds Error
>>> L[-4]

* i-th element is indexed at i -1
* Can have negative index

 If a list has a length of n, we can index from -nto n -1.

LIST

* We can access, or index, any element with square brackets.

>>>1E =112 3.4 5]

* Lists are zero-indexed. >>> L[0]

1

>>> | [3]

4

>>> | [5]

Index OutOfBounds Error
>>> L[-4]

» Can have negative index 2

* First element is at index O

 j-th element is indexed at i -1

 If a list has a length of n, we can index from -nto n -1.

LIST

* With multiple lists, we can concatenated them
together using +

S>> odads=]1 3. 5,7]
>>> evens = [2, 4, 6]
>>> odds + evens

It 5.5 7 7. 4.6

LIST

* To obtain the length of a sequence, use the len
built-in function

>>> odds =[1, 3, 5, 7]
>>> |en(odds)

4

>>> odds[len(odds) - 1]
7

LIST

e Check if an element exists in a list with in

« Cannot look into nested lists

>>> odds = ['], 35 7] == et = [1, [2, 3], 9 7]
>>> 5 in odds >>> 3 in st

True False
>>> 3 in odds
False

LIST
WHAT WOULD PYTHON PRINT?

ds = [1I 5’ 4’ [21 3]’ 3]
print(a[0], a[-1])

len(a)
2-.1n a
4 - in a

af3]1[0]

LIST
WHAT WOULD PYTHON PRINT?

ds = [1I 5’ 4’ [21 3]’ 3]
print(a[0], a[-1])

len(a)
2-.1n a
4 - in a

af3]1[0]

LIST
WHAT WOULD PYTHON PRINT?

ds = [1I 5’ 4’ [21 3]’ 3]
print(a[0], a[-1])

len(a)
2-.1n a
4 - in a

af3]1[0]

LIST
WHAT WOULD PYTHON PRINT?

=>>_ae=s [, =4 (0. 3] - O

>>> print(a[0], a[-1])

13

>>> len(a)

5

>>> 2 1in a

False Cannot look into nested list [2, 3]
>>> 4 1in a

>>> a[3][0]

LIST
WHAT WOULD PYTHON PRINT?

=>>_ae=s [, =4 (0. 3] - O
>>> print(a[0], a[-1])

=<3

>>> len(a)

5

>>> 2 in a

False

>>> 4 in a

True

>>> a[3][0]

LIST
WHAT WOULD PYTHON PRINT?

=>>_ae=s [, =4 (0. 3] - O
>>> print(a[0], a[-1])

s <3

>>> len(a)

5

>>>.2-1n a

False

>>> .4 110 a

True
>>> a[3][0] a[3] returns the nested list

2

LIST SLICING

We can get a certain part of a list via slicing
list[<start>:<stop>:<step>]

Our new list beings at start, takes every step-th element (or jump
by step), and ends at index before stop.

If it cannot reach stop, it will return an empty list.
By default step is 1
Slicing will always create a new list.

step can be positive (go right) or negative (go left).

LIST SLICING

>>> |St e [ICI'ISI’I6I,I1I,Ialllisll ISOI’ Ifunl]
>SSt 36

LIST SLICING

>>> |St e [ICI’ISI’I6I,I1I,Ialllisll ISOI’ Ifunl]
>SSt 36
[|1|’ |a|, lisl]

LIST SLICING

== Ist=FEeais' '6.F'5 Jict *sol fun']
>SSt 36

[-a,.Ic]

>>> |st[3:100]

LIST SLICING

e sh=l sl (6 ") el Yot Hn]
>SSt 36

[|1|’ Iall liSI

>>> |st[3:100]

[% As’ {so’ fun’]

LIST SLICING

== Ist=FEeais' '6.F'5 Jict *sol fun']
>SSt 36

[l =a- s

>>> |st[3:100]

'8 . ls' 'so “tun']

>>> |st[2:6:2]

LIST SLICING

== Ist=FEeais' '6.F'5 Jict *sol fun']
>SSt 36

[l =a- s

>>> |st[3:100]

'8 . ls' 'so “tun']

>>> |st[2:6:2]

'6', '

LIST SLICING

== Ist=FEeais' '6.F'5 Jict *sol fun']
>SSt 36

[l =a- s

>>> |st[3:100]

'8 . ls' 'so “tun']

>>> |st[2:6:2]

(6", 2’

>>> |st[-5: -2]

LIST SLICING

== Ist=FEeais' '6.F'5 Jict *sol fun']
>SSt 36

[l =a- s

>>> |st[3:100]

'8 . ls' 'so “tun']

>>> |st[2:6:2]

(6", 2’

>>> |st[-5: -2]

5 is.

LIST SLICING

== Ist=FEeais' '6.F'5 Jict *sol fun']
>SSt 36

|1 —a s

>>> |st[3:100]

[’ 5 s’ 'so/ ‘tun']

>>> |st[2:6:2]

(6", 2’

>>> |st[-5: -2]

il a . s

>>> |st[-3: -5]

LIST SLICING

== Ist=FEeais' '6.F'5 Jict *sol fun']
>SSt 36

|1 —a s

>>> |st[3:100]

[’ 5 s’ 'so/ ‘tun']
>>> |st[2:6:2]

(6", 2’

>>> |st[-5: -2]

il a . s

>>> |st[-3: -5]

[]

LIST SLICING

== Ist=FEeais' '6.F'5 Jict *sol fun']
>SSt 36

[l =a- s

>>> |st[3:100]

[’ 5 s’ 'so/ ‘tun']
>>> |st[2:6:2]

(6", 2’

>>> |st[-5: -2]

5 is.

>>> |st[-3: -5]

[]

>>> |st[-3:-5:-1]

LIST SLICING

== Ist=FEeais' '6.F'5 Jict *sol fun']
>SSt 36

[l =a- s

>>> |st[3:100]

[’ 5 s’ 'so/ ‘tun']
>>> |st[2:6:2]

(6", 2’

>>> |st[-5: -2]

5 is.

>>> |st[-3: -5]

[]

>>> |st[-3:-5:-1]

I

liSl’ la]

LIST SLICING

== Ist=[FEe=is' '6. 9" "3 Jis! 'sol fun'] = =>>'lst]4:2]
>SSt 36

[l =a- s

>>> |st[3:100]
'8 . ls' 'so “tun']
>>> |st[2:6:2]

(6", ']

>>> |st[-5: -2]

5 is.

>>> |st][-3: -5]

[l

>>> |st[-3:-5:-1]

I

s al

LIST SLICING

S>> Isb=[lc= s 16 4" '3l list s 'tun] = >>>'Istld:2]

>SSt 36

[l -'a- 5]
>>> |st[3:100]
'8 . ls' 'so “tun']
>>> |st[2:6:2]
(6", ']

>>> |st[-5: -2]
5. i]
>>> |st][-3: -5]

[l

>>> |st[-3:-5:-1]
[‘is’, 'a’]

[

LIST SLICING

== Ist=[FEe=is' '6. 9" "3 Jis! 'sol fun'] = =>>'lst]4:2]
>>> |st[3:6] [l

(1 =a s >>> |st[2:7]
>>> |st[3:100]

'8 . ls' 'so “tun']

>>> |st[2:6:2]

(6", ']

>>> |st[-5: -2]

5 is.

>>> |st][-3: -5]

[l

>>> |st[-3:-5:-1]

I

s al

LIST SLICING

== Ist=[FEe=is' '6. 9" "3 Jis! 'sol fun'] = =>>'lst]4:2]
>>> |st[3:6] [l

(1 =a s >>> |st[2:7]
>>> |st[3:100] [F6: dia= s ; 40
'8 . ls' 'so “tun']

>>> |st[2:6:2]

(6", 2’

>>> |st[-5: -2]

5 is.

>>> |st][-3: -5]

[l

>>> |st[-3:-5:-1]

I

s al

LIST SLICING

== Ist=[FEe=is' '6. 9" "3 Jis! 'sol fun'] = =>>'lst]4:2]
>>> |st[3:6] []

(1 =a s >>> |st[2:7]
>>> |st[3:100] [F6: dia= s ; 40
[T "a s’ ‘'so: ftun'] >>> |st[2:7:-4]
>>> |st[2:6:2]

(6", 2’

>>> |st[-5: -2]

5 is.

>>> |st][-3: -5]

[l

>>> |st[-3:-5:-1]

I

s al

LIST SLICING

== Ist=[FEe=is' '6. 9" "3 Jis! 'sol fun'] = =>>'lst]4:2]
>>> |st[3:6] []

(1 =a s >>> |st[2:7]
>>> |st[3:100] 6. 1 ia=lis 7 s6
[’ 5 s’ 'so/ ‘tun'] >>> |st[2:7:-4]
>>> |st[2:6:2] []

6" ‘a >>> |et-5]
>>> |st[-5: -2]

il a . s

>>> |st][-3: -5]

[]

>>> |st[-3:-5:-1]

I

s al

LIST SLICING

== Ist=FEeais' '6.F'5 Jict *sol fun']
>SSt 36

[l =a- s

>>> |st[3:100]

[’ 5 s’ 'so/ ‘tun']
>>> |st[2:6:2]

(6", 2’

>>> |st[-5: -2]

5 is.

>>> |st[-3: -5]

[]

>>> |st[-3:-5:-1]

liSI’ |a]

>>> |st[4:2]

[l

>>> |st[2:7]

[|6|' I1|’ Iall IiSI’ ISOI]
>>> |st[2:7:-4]

[l

>>> |st[:5]
[ICI’ISI’I6I’I1I'IaI]

LIST SLICING

== Ist=FEeais' '6.F'5 Jict *sol fun']
>SSt 36

[l =a- s

>>> |st[3:100]

[’ 5 s’ 'so/ ‘tun']
>>> |st[2:6:2]

(6", 2’

>>> |st[-5: -2]

5 is.

>>> |st[-3: -5]

[]

>>> |st[-3:-5:-1]

liSI’ |a]

>>> |st[4:2]

[l

>>> |st[2:7]

6 1 ae s ‘sa.]
>>> |st[2:7:-4]

[l

>>> |st[:5]
['eis 6 - 1<'a']
>>> |st[7:]

LIST SLICING

== Ist=[FEe=is' '6. 9" "3 Jis! 'sol fun'] = =>>'lst]4:2]
>>> |st[3:6] []

(1 -a is] >>> |st[2:7]
>>> |st[3:100] [F6: dia= s ; 40
[’ 5 s’ 'so/ ‘tun'] >>> |st[2:7:-4]
>>> |st[2:6:2] []

6" -a > eS|
>>> [st[-5: -2] ['eis 26 ks a']
3 a3 s >>> |st[7:]
>>> |st[-3: -5] ['fun’]

[l

>>> |st[-3:-5:-1]

['is’, 'a’]

LIST SLICING

WHAT WOULD PYTHON PRINT?

desf oy, b, 452,55, O]

af:j

LIST SLICING

WHAT WOULD PYTHON PRINT?

desf oy, b, 452,55, O]

LIST SLICING

WHAT WOULD PYTHON PRINT?

LIST SLICING

WHAT WOULD PYTHON PRINT?

Step by default is 1.
Cannot reach 2 from 4 when going right.

LIST SLICING

WHAT WOULD PYTHON PRINT?

LIST SLICING

WHAT WOULD PYTHON PRINT?

Without passing start and stop, the defaults will
change with step.

3]

LIST SLICING

WHAT WOULD PYTHON PRINT?

Default start and step changes with the sign of s.

If s is a positive step, then Ist[<start>:<step>:s] becomes
Ist[O:len(Ist):s].

Ist[<start>:<step>:-s] becomes Ist[len(Ist)-1: -(len(Ist)+1) : -s]

* -(len(lst)+1) because we need to count backwards and cross the
O-th index.

>>>alsi=1]
[3, 5, 2, 4, 1, 3]

FOR LOOPS

e Another method of iteration

« for <variable> in <sequence>

>>> for i in range(0, 6): >>>lst [23] >>> |st [1, 2, 3]
print(i) >>> for x in Ist: >>> for i in range(len(Ist)):
print(x) print(Ist[i])
1
2
3

FOR LOOPS

range(<start>, <stop>,<step>)

Allows a for loop to iterate through a sequence from start up to
and excluding stop, taking every step-th element.

Default step is 1. for i in range(0, 5, 2)

foriin range(2, 5)

Default start is 0. for i range(5)

Must have stop.

LIST COMPREHENSION

» Compact way to create a list

* [<map exp> for <name> in <iter exp> if <filter exp>]

* if clause is optional

nums = 1.0 2, 3. d - 6o 7]
deete = — b
for X in nums:
it x %2 —= (:
lst = [=eh3]

[% .3 for X in pums 1f X 3 2 == 0]

LIST COMPREHENSION

e Don’t use an else at the end.
» Move it to the expression.

e x + 3 if not x % 2 else 100 is aternary expression

>>> [x + 3 for x in nums if x % 2 == 0 else 100]
Error

>>> [x + 3 1f x % 2 == 0 else 100 for x in nums]
Felasrit oF

LIST COMPREHENSION

SLICING

* Another way to see slicing

> mms =1, 2, 3, 4, 5.0
>>> [nums[1] for i1 in range(l
(2, 4]

>>> nums[1:5:2]

bdy 4]

’

LIST COMPREHENSION

WHAT WOULD PYTHON PRINT?

2> B1 bl fors an {1, 20, 3. A4 51 -agf 4 37

e ok e for- 1 In (5=l o3 =, 3] 1fane =04

>y ¥ 2 for vvian [x. X + 1] for-Xx an-[1l;

2y D, 4]

LIST COMPREHENSION

WHAT WOULD PYTHON PRINT?

2> B1 bl fors an {1, 20, 3. A4 51 -agf 4 37
Sy o]
R e o s 5 for T oAncf5 s =1, 23 =1, '3 1f a0

>y ¥ 2 for vvian [x. X + 1] for-Xx an-[1l;

2y D, 4]

LIST COMPREHENSION

WHAT WOULD PYTHON PRINT?

2> B1 bl fors an {1, 20, 3. A4 51 -agf 4 37
Sy o]

e ok e for- 1 In (5=l o3 =, 3] 1fane =04

[20, 6, 6]
>2nilify 2 2 for vvian [%, X t+ 1]} for-x in-[1l.

2y D, 4]

LIST COMPREHENSION

WHAT WOULD PYTHON PRINT?

2> B1 bl fors an {1, 20, 3. A4 51 -agf 4 37
Sy o]

EEse e s 5 for T oinaf5 s =1, 23 =1, '3 if

[200 6, =6]
>y 2 2 for viana{x, X +t 1:fF for X in-[1-
12, 4], [4; 61y 16, O], 8, 10]]

st =]
for.x 1n: |4, 2, 3, 47)¢
for v-an. [x, x +* L}s
LSC =" fly = 211

LIST COMPREHENSION

WHAT WOULD PYTHON PRINT?

%2 2-Ffor v an [x,.% B U]l |-for & w1, 2.3, .41}
[X=d o x=2, X=3, X=4]
et -2 00 v an [L; 2k; [y %2 .fTor -y in-[2: 3, .

(te, 41, [2- Of {55 8l [8, TO|]

Tse = [Nested list comprehension start with

for xXan 1, -2y 35 4] outer variable.
for v in-[x"x + 1] Do inner list comprehension.
st t= [y £+21]

From John Denero

TREES

A tree has a root. The value of the root is called the root value.
Each branch, or subtree, is a tree and it has a root.
Nodes are the circle and the value is within.

Leaf nodes have no branches (or children).

From John Denero’s Slides

TREES

» Except for the upper most root (3), every node in the tree has

only 1 parent.

* All nodes except for leaves have child(ren).

e Trees are recursive because subtrees and leaves are also trees.

From John Denero’s Slides

TREES

* The node of 3 is the parent of the node with 1 and node with 2.
* Simpler: 3 is the parent of 1 and 2, and 2 is the child of 3.

* Note: nodes are the circle, or position at the tree. You need to
actually get the value.

From John Denero’s Slides

TREES

* The depth of a node is how far it is away from the root.

* Or count the number of edges from the root to the node.

TREES

* The depth of a node is how far it is away from the root.

* Or count the number of edges from the root to the node.

TREES

* The height of a tree is the depth of the lowest leaves.

TREES

* The height of a tree is the depth of the lowest leaves.

height 2

TREES

Our tree(root, branches=[]) constructor is implemented via
Python Lists

= tree(1l,
[tree(5),
Exeel s,
[tree(3)]),
tree(4,
[tree(6),
tree(/7)])

b

TREES

* branches(t) returns a sequence of subtrees.

* We usually need to iterate over the branches and make
recursive calls for each subtree/branch.

TREES

* For tree questions, we typically do something with the root
of the tree and then for each of the tree’s branches, make the

recursive call.

* The smaller problems are the tree’s subtrees, which can be

accessed via the tree’s branches.

TREES

#Constructor
def tree(root, branches=[]):
return [root] + list(branches)

#Selectors
def root(tree):

return tree| 0] tree creates a tree.

root obtains the value of the tree.

branches (tree) : branches obtains a list of the tree’s branches.
return tree[1l:] is_leaf checks if the tree has no more branches.

1s leaf(tree):
return not branches(tree)

TREES

Return a tree with the square of every element of t

def square tree(t):

def square tree(t):
1f as lecafi(t):

return tree(root(t)**2)
new branches = []
for branch in branches(t):

new branches += [square tree(branch)]
return tree(root(t)**2, new branches)

TREES

- Base case is check if tree is a leaf.

- Since each branch is a subtree, we

need to make recursive calls to every branch.

- Leap of faith that square_tree(branch) returns

def square tree(t): the subtree with values squared.

1f as lecafi(t):
return tree(root(t)**2)
new branches = []
for branch in branches(t):
new branches += [square tree(branch)]
return tree(root(t)**2, new branches)

TREES

* Notice that if there are no branches,

then the for loop does not iterative over anything.
* new_branches becomes an empty list, and

the return function would work.

def square tree(t):
new branches = []
for branch in branches(t):
new branches += [square tree(branch)]

return tree(root(t)**2, new branches)

TREES

Return a tree with the square of every element of t

def square tree(t):
new branches = []
for branch in branches(t):
new branches += [square tree(branch)]
return tree(root(t)**2, new branches)

square tree(t):
return tree(root(t)**2, [square tree(branch) for branch in branches(t)])

Return the height of the tree

def height(t):

Return the height of the tree

def height(t):
1£f 1s dleafi{kt):
return 0
return | + max([height(branch) for branch in branches(t)])

TREES

 Since we now dealing with numbers,
we need to have base case check for
leaves.

def height(t):
1£f 1s dleafi{kt):
return 0
return | + max([height(branch) for branch in branches(t)])

RECAP

Lists contain a sequence of values of which we can access via
indexing.

List slicing creates a new list of a certain portion of the
original list.

For loops are a way to iterate through sequences.

List comprehension creates a new list in one line.

Trees are recursive data structures that have root values and
maybe other trees as their children.

APPENDIX

e Data Abstraction

DATA ABSTRACTION

Most of the time we need to work on code that was implemented
by someone else.

Via data abstraction, we don’t need to worry about how the
implementation of the data.

We just need to know how to use the data.

Why is it useful?

DATA ABSTRACTION

* Why is it useful?

* If we were to change the implementation of a ADTs, we only need
to change the constructors and selectors.

* Any functions we wrote that used the selectors do not need to be
changed!

DATA ABSTRACTION

* We can treat data as abstract data types
» Constructors create these ADTs

 Selectors are used to retrieve information from ADTs

DATA ABSTRACTION

Constructor:
def make_city(city, latitude, longitude):
return [city, latitude, longitude]

Selectors:

def get_name(city):
return city[0]

def get_lat(city):
return city[1]

def get_lon(city):
return city[2]

DATA ABSTRACTION VIOLATIONS

* When we use the direct implementation of an ADT rather than its

selectors when writing functions, we are violating data abstraction
barriers!

 This is bad because we are making an assumption on how the
data is implemented.

DATA ABSTRACTION VIOLATIONS

* When we use the direct implementation of an ADT rather than its
selectors when writing functions, we are violating data abstraction
barriers!

def distance(city1, city2):
lat_1, lon_1 = get_lat(city1), get_lon(city1)
lat_2, lon_2 = get_lat(city2), get_lon(city2)
return sqrt((lat_1 - lat_2)**2 + (lon_1 - lon_2)**2)

def distance(city1, city2):
lat_1, lon_1 = city[1], city[2]
lat_2, lon_2 = city[1], city[2]
return sqgrt((lat_1 - lat_2)**2 + (lon_1 - lon_2)**2)

DATA ABSTRACTION VIOLATIONS

* When we use the direct implementation of an ADT rather than its
selectors when writing functions, we are violating data abstraction
barriers!

def distance(city1, city2): GOOD
lat_1, lon_1 = get_lat(city1), get_lon(city1)
lat_2, lon_2 = get_lat(city2), get_lon(city2)
return sqrt((lat_1 - lat_2)**2 + (lon_1 - lon_2)**2)

def distance(city1, city2):
lat_1, lon_1 = city[1], city[2]
lat_2, lon_2 = city[1], city[2]
return sqgrt((lat_1 - lat_2)**2 + (lon_1 - lon_2)**2)

