
CS 61A
DISCUSSION 4

LIST MUTATION, ORDERS OF GROWTH, AND NONLOCAL

Raymond Chan
Discussion 134

UC Berkeley Fall 16

AGENDA

• Announcements

• List Mutation

• Orders of Growth

• Nonlocal

• Appendix

• Dictionaries

ANNOUNCEMENTS

• Maps due tonight

• Lab 5 due Friday 9/30

• CSM signups reopened

• 61A one-on-one tutoring

CHALLENGE QUESTION

• For those who runs through the packet, what is the order of the
growth for the function below?

def f(n):
 i = 2
 while i < n:
 print(i)
 i = i * i

CHALLENGE QUESTION

• For those who runs through the packet, what is the order of the
growth for the function below?

def f(n):
 i = 2
 while i < n:
 print(i)
 i = i * i

Θ(log log n)

CHALLENGE QUESTION

• For those who runs through the packet, what is the order of the
growth for the function below?

def f(n):
 i = 2
 while i < n:
 print(i)
 i = i * i

Θ(log log n)

32
31
.
.

16
15
.
.
3
2
1

Θ(1)

32
16
8
4
2
1

32
4
2
1

Θ(log n)

Θ(log log n)

MUTATION

• When we define functions, we created function objects in
environment diagrams.

• When we create lists, we create list objects.

• We can change the elements of list objects after we’ve created it.

>>> a =[1, 2, 3]
>>> a
[1, 2, 3]
>>> a[2] = 100
>>> a

MUTATION

• When we define functions, we created function objects in
environment diagrams.

• When we create lists, we create list objects.

• We can change the elements of list objects after we’ve created it.

>>> a =[1, 2, 3]
>>> a
[1, 2, 3]
>>> a[2] = 100
>>> a
[1, 2, 100]

MUTATION

• If I assign this variable a to variable b, b receives the reference.

• a and b is the same list as they are both referencing the same list
object

• a, b, and c have the same elements, but a and c are not the same
list

MUTATION

• When we assign a list to a variable, the variable references the list
object.

• If I pass in a variable that references a list to a function argument,
I am passing in the reference.

• This is similar to passing in a function object.

MUTATION

• Within the body of func, lst’s values are changed. Notice that a’s
values are also changed because lst references the same list a is
point to.

MUTATION

• Lists and dictionaries are mutable.

• Tuples and strings are immutable. Once they are created, they
cannot be changed.

MUTATION

• lst.append(x) adds x to the end of the list.

• Only creates one new index.

>>> a = [1, 2, 3]
>>> a.append(4)
>>> a
[1, 2, 3, 4]
>>> a.append([5, 6])
>>> a
[1, 2, 3, 4, [5, 6]]
>>> len(a)
5

MUTATION

• A list can append itself.

>>> a = [1, 2, 3, 4]
>>> a.append(a)
>>> a
[1, 2, 3, 4, [...]]
>>> a[4][3]
4
>>> a[4][4][4][2]
3

MUTATION

• lst.extend(seq) appends each element of seq to list.

• seq can be a list or a tuple.

• tinyurl.com/mutation-q1

>>> a = [1, 2]
>>> b = [3, 4]
>>> a.extend(b)
>>> a
[1, 2, 3, 4]
>>> b
[3, 4]

http://tinyurl.com/mutation-q1

MUTATION

• lst.insert(i, x) inserts x at index i by adding a new element and not
replace the original element at i.

>>> a = [1, 2, 3]
>>> a.insert(1, 55)
>>> a
[1, 55, 2, 3]

MUTATION

• lst.remove(x) removes the first time we see x in a list, otherwise
errors

>>> a = [1, 2, 3, 2, 5, 1]
>>> a.remove(2)
>>> a
[1, 3, 2, 5, 1]

MUTATION

• lst.pop(i) removes and returns the element at index i. By default, i
is the last element.

>>> a = [1, 2, 3, 2, 4, 1]
>>> a.pop()
1
>>> a.pop(3)
2
>>> a
[1, 2, 3, 4]

MUTATION

• += for lists mutates the original list.

• += is different from a = a + [1] when a is a list.

• Evaluating right hand side creates a new list and then assigns the
nest list to a.

>>> a = [1, 2, 3, 4]
>>> id(a)
<some id 1>
>>> a += [3]
>>> a
[1, 2, 3, 4, 3]
>>> id(a)
<some id 1>

>>> a = a + [2]
>>> a
[1, 2, 3, 4, 3, 2]
>>> id(a)
>>>
<some id 2>

MUTATION

• += for lists mutates the original list, but is still a “reassignment”.

• Thus the list needs to be in the local frame.

• Using append or extend only require access to the list.

• It can be in the parent frame.

MUTATION

lst = [1, 2, 3]
def f():

lst.append(4)

f()
print(lst)

def g():
lst += [5]

g()

[1, 2, 3, 4] Error

MUTATION

>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
#compares each value
>>> lst1 == lst2

#compares references
>>> lst1 is lst2

>>> lst2 = lst1
>>> lst2 is lst1

>>> lst1.append(4)
>>> lst1

>>> lst2

>>> lst2[1] =42
>>> lst2

>>> lst1 = lst1 + [5]
>>> lst1 == lst2

>>> lst1

>>> lst2

>>> lst2 is lst1

MUTATION

>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
#compares each value
>>> lst1 == lst2
True
#compares references
>>> lst1 is lst2

>>> lst2 = lst1
>>> lst2 is lst1

>>> lst1.append(4)
>>> lst1

>>> lst2

>>> lst2[1] =42
>>> lst2

>>> lst1 = lst1 + [5]
>>> lst1 == lst2

>>> lst1

>>> lst2

>>> lst2 is lst1

MUTATION

>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
#compares each value
>>> lst1 == lst2
True
#compares references
>>> lst1 is lst2
False
>>> lst2 = lst1
>>> lst2 is lst1

>>> lst1.append(4)
>>> lst1

>>> lst2

>>> lst2[1] =42
>>> lst2

>>> lst1 = lst1 + [5]
>>> lst1 == lst2

>>> lst1

>>> lst2

>>> lst2 is lst1

MUTATION

>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
#compares each value
>>> lst1 == lst2
True
#compares references
>>> lst1 is lst2
False
>>> lst2 = lst1
>>> lst2 is lst1
True
>>> lst1.append(4)
>>> lst1

>>> lst2

>>> lst2[1] =42
>>> lst2

>>> lst1 = lst1 + [5]
>>> lst1 == lst2

>>> lst1

>>> lst2

>>> lst2 is lst1

MUTATION

>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
#compares each value
>>> lst1 == lst2
True
#compares references
>>> lst1 is lst2
False
>>> lst2 = lst1
>>> lst2 is lst1
True
>>> lst1.append(4)
>>> lst1
[1, 2, 3, 4]
>>> lst2

>>> lst2[1] =42
>>> lst2

>>> lst1 = lst1 + [5]
>>> lst1 == lst2

>>> lst1

>>> lst2

>>> lst2 is lst1

MUTATION

>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
#compares each value
>>> lst1 == lst2
True
#compares references
>>> lst1 is lst2
False
>>> lst2 = lst1
>>> lst2 is lst1
True
>>> lst1.append(4)
>>> lst1
[1, 2, 3, 4]
>>> lst2
[1, 2, 3, 4]

>>> lst2[1] =42
>>> lst2

>>> lst1 = lst1 + [5]
>>> lst1 == lst2

>>> lst1

>>> lst2

>>> lst2 is lst1

MUTATION

>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
#compares each value
>>> lst1 == lst2
True
#compares references
>>> lst1 is lst2
False
>>> lst2 = lst1
>>> lst2 is lst1
True
>>> lst1.append(4)
>>> lst1
[1, 2, 3, 4]
>>> lst2
[1, 2, 3, 4]

>>> lst2[1] =42
>>> lst2
[1, 42, 3, 4]
>>> lst1 = lst1 + [5]
>>> lst1 == lst2

>>> lst1

>>> lst2

>>> lst2 is lst1

MUTATION

>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
#compares each value
>>> lst1 == lst2
True
#compares references
>>> lst1 is lst2
False
>>> lst2 = lst1
>>> lst2 is lst1
True
>>> lst1.append(4)
>>> lst1
[1, 2, 3, 4]
>>> lst2
[1, 2, 3, 4]

>>> lst2[1] =42
>>> lst2
[1, 42, 3, 4]
>>> lst1 = lst1 + [5]
>>> lst1 == lst2
False
>>> lst1

>>> lst2

>>> lst2 is lst1

MUTATION

>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
#compares each value
>>> lst1 == lst2
True
#compares references
>>> lst1 is lst2
False
>>> lst2 = lst1
>>> lst2 is lst1
True
>>> lst1.append(4)
>>> lst1
[1, 2, 3, 4]
>>> lst2
[1, 2, 3, 4]

>>> lst2[1] =42
>>> lst2
[1, 42, 3, 4]
>>> lst1 = lst1 + [5]
>>> lst1 == lst2
False
>>> lst1
[1, 42, 3, 4, 5]
>>> lst2

>>> lst2 is lst1

MUTATION

>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
#compares each value
>>> lst1 == lst2
True
#compares references
>>> lst1 is lst2
False
>>> lst2 = lst1
>>> lst2 is lst1
True
>>> lst1.append(4)
>>> lst1
[1, 2, 3, 4]
>>> lst2
[1, 2, 3, 4]

>>> lst2[1] =42
>>> lst2
[1, 42, 3, 4]
>>> lst1 = lst1 + [5]
>>> lst1 == lst2
False
>>> lst1
[1, 42, 3, 4, 5]
>>> lst2
[1, 42, 3, 4]
>>> lst2 is lst1

MUTATION

>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
#compares each value
>>> lst1 == lst2
True
#compares references
>>> lst1 is lst2
False
>>> lst2 = lst1
>>> lst2 is lst1
True
>>> lst1.append(4)
>>> lst1
[1, 2, 3, 4]
>>> lst2
[1, 2, 3, 4]

>>> lst2[1] =42
>>> lst2
[1, 42, 3, 4]
>>> lst1 = lst1 + [5]
>>> lst1 == lst2
False
>>> lst1
[1, 42, 3, 4, 5]
>>> lst2
[1, 42, 3, 4]
>>> lst2 is lst1
False

MUTATION

def remove_all(el, lst):
"""
>>> x = [3, 1, 2, 1, 5, 1, 1, 7]
>>> remove_all(1, x)
>>> x
[3, 2, 5, 7]
"""

Write a function that removes all instances of an element from a list.

MUTATION

def remove_all(el, lst):
"""
>>> x = [3, 1, 2, 1, 5, 1, 1, 7]
>>> remove_all(1, x)
>>> x
[3, 2, 5, 7]
"""
while el in lst:

lst.remove(el)

Write a function that removes all instances of an element from a list.

MUTATION

def add_this_many(x, el, lst):
""" Adds el to the end of lst the number of times x occurs
in lst.
>>> lst = [1, 2, 4, 2, 1]
>>> add_this_many(1, 5, lst)
>>> lst
[1, 2, 4, 2, 1, 5, 5]
>>> add_this_many(2, 2, lst)
>>> lst
[1, 2, 4, 2, 1, 5, 5, 2, 2]
"""

Write a function that takes two values x1 and el, and a list, and adds as many el’s
to the end of this lists there are x’s.

MUTATION

def add_this_many(x, el, lst):
""" Adds el to the end of lst the number of times x occurs
in lst.
>>> lst = [1, 2, 4, 2, 1]
>>> add_this_many(1, 5, lst)
>>> lst
[1, 2, 4, 2, 1, 5, 5]
>>> add_this_many(2, 2, lst)
>>> lst
[1, 2, 4, 2, 1, 5, 5, 2, 2]
"""
count = 0
for element in lst:

if element == x:
count += 1

while count > 0:
lst.append(el)
count -= 1

Write a function that takes two values x1 and el, and a list, and adds as many el’s
to the end of this lists there are x’s.

MUTATION

def add_this_many(x, el, lst):
""" Adds el to the end of lst the number of times x occurs
in lst.
>>> lst = [1, 2, 4, 2, 1]
>>> add_this_many(1, 5, lst)
>>> lst
[1, 2, 4, 2, 1, 5, 5]
>>> add_this_many(2, 2, lst)
>>> lst
[1, 2, 4, 2, 1, 5, 5, 2, 2]
"""
count = 0
for element in lst:

if element == x:
count += 1

while count > 0:
lst.append(el)
count -= 1

Write a function that takes two values x1 and el, and a list, and adds as many el’s
to the end of this lists there are x’s.

for el in lst:
 if el == x:
 lst.append(el)

Wrong solutions because the
elements are added to the end
of the list as you iterate. Thus it

could be iterating for ever.
add_this_many(2, 2, lst)

ORDERS OF GROWTH

• When we have really large inputs, we need to worry about
efficiency.

• We measure efficiency by runtime (Time complexity).

• How long does the functions take to run in terms of the size of
the input?

• If the size of the input grows, how does the runtime change?

ORDERS OF GROWTH

• We use Big-Θ notation means a tight bound on time complexity.

• Θ(n2) means that the function’s runtime is no larger and no smaller
than quadratic of the input.

ORDERS OF GROWTH

• n: size of problem

• R(n): amount of resource used (time or space)

• R(n) = Θ(f(n))

• k1 * f(n) ≤ R(n) ≤ k2 * f(n)

• where k1 and k2 are some constants and k1 ≤ k2

• Assume n is larger than some minimum m

ORDERS OF GROWTH

def square(n):
return n * n

1 primitive operation *
For our purposes, * is constant time

input function call number of
operation

number of operations
1 square(1) 1*1 1
2 square(2) 2*2 1
… … … …

100 square(100) 100*100 1
… … … …
n square(n) n*n 1

ORDERS OF GROWTH

def square(n):
return n * n

1 primitive operation *
For our purposes, * is constant time

input function call number of
operation

number of operations
1 square(1) 1*1 1
2 square(2) 2*2 1
… … … …

100 square(100) 100*100 1
… … … …
n square(n) n*n 1

Θ(1)

ORDERS OF GROWTH

def factorial(n):
if n == 0:

return 1
return n * factorial(n - 1)

Each recursive call has
a constant amount operations.
But we have n recursive calls

input function call return value number of operations
1 factorial(1) 1*1 1
2 factorial(2) 2*1*1 2
… … … …

100 factorial(100) 100*99*…*1*1 100
… … … …
n factorial(n) n*(n-1)*…*1*1 n

ORDERS OF GROWTH

def factorial(n):
if n == 0:

return 1
return n * factorial(n - 1)

Each recursive call has
a constant amount operations.
But we have n recursive calls

Θ(n)

input function call return value number of operations
1 factorial(1) 1*1 1
2 factorial(2) 2*1*1 2
… … … …

100 factorial(100) 100*99*…*1*1 100
… … … …
n factorial(n) n*(n-1)*…*1*1 n

ORDERS OF GROWTH

• Θ(1) - constant time; same time regardless of input size.

• Θ(log n) - logarithmic time; e.g. usually dividing the problem
down by some factor.

• Θ(n) - linear time; e.g. usually 1 loop

• Θ(n2), Θ(n3), etc - polynomial time; e.g. nested loops

• Θ(cn) - exponential time; where c is some constant; really horrible
time complexity; e.g. tree recursion

ORDERS OF GROWTH

• Constant time is the best and exponential is the worse.

• Any polynomial is worse than any logarithmic.

• Higher degree polynomial worse than lower degree.

ORDERS OF GROWTH

Creds: http://bigocheatsheet.com/

For this class,
assume O is Θ.

See appendix,
for other runtime

notation.

http://bigocheatsheet.com/

ORDERS OF GROWTH

• Since we care about the runtime when n gets infinitely large, we
can drop lower order terms and constants.

• Θ(2n3 + 6n + log(n)) = Θ(n3)

• Should always provide the tightest bound.

ORDERS OF GROWTH

• Count the number of iterations and/or recursive calls.

• Find the number of operations per iteration or recursive call.

• Nested loops are usually some polynomial time.

• Exponential time are usually tree recursive.

• Beware of return statements because it exits out of a frame
before the loops are finished.

NONLOCAL

• We could only access variables in parent frames and not modify
them.

• Nonlocal allows us to modify variables in parents frame and
outside of the current frame.

NONLOCAL

• We could only access variables in parent frames and not modify
them.

• Nonlocal allows us to modify variables in parents frame and
outside of the current frame.

def stepper(num):
def step():

num = num + 1
return num

return step

NONLOCAL

• We could only access variables in parent frames and not modify
them.

• Nonlocal allows us to modify variables in parents frame and
outside of the current frame.

def stepper(num):
def step():

num = num + 1
return num

return step

Error: We are trying to use num before
we assigned it

NONLOCAL

• We could only access variables in parent frames and not modify
them.

• Nonlocal allows us to modify variables in parents frame and
outside of the current frame.

def stepper(num):
def step():

nonlocal num
num = num + 1
return num

return step

In step’s frame, does not
try to find num in local frame.

NONLOCAL

• We could only access variables in parent frames and not modify
them.

• Nonlocal allows us to modify variables in parents frame and
outside of the current frame.

def stepper(num):
def step():

nonlocal num
num = num + 1
return num

return step

For environment diagrams,
num is not a variable in any

of step’s frames.

NONLOCAL

• Variables in the global frame cannot be modified using nonlocal.

• Variables in the current frame cannot be overridden using
nonlocal.

• Cannot have a local and nonlocal variable with the same names.
in a single frame.
def stepper(num):

def step():
nonlocal num
num = num + 1
return num

return step

NONLOCAL

• What is wrong with the following code?

a = 5
def another_add_one():

nonlocal a
a += 1

another_add_one()

NONLOCAL

• What is wrong with the following code?

a = 5
def another_add_one():

nonlocal a
a += 1

another_add_one()

a is a variable in the global frame.
Nonlocal cannot be used to modify variables in the global frame.

NONLOCAL

• What is wrong with the following code?

def adder(x):
def add(y):

nonlocal x, y
x += y
return x

return add
adder(2)(3)

NONLOCAL

• What is wrong with the following code?

def adder(x):
def add(y):

nonlocal x, y
x += y
return x

return add
adder(2)(3)

y does not exist in any parent frames.
It is a local variable

NONLOCAL

• What is wrong with the following code?

def adder(x):
z = 5
def add(y):

z = 8
nonlocal x, z
x += z
return x

return add
adder(2)(3)

RECAP

• Lists and dictionaries are mutable. Tuples and strings are immutable.

• Python list objects are references with pointers. When calling functions that
takes a list, we pass in the reference (or pointer) and not create a new list.

• Orders of growth tells us how long the running time of the function approach as
n approach infinity.

• Constant is better than logarithmic, which is better than polynomial, which is
better than exponential.

• Lower polynomial is better than higher polynomial.

• Try drawing a call stack or tree to count the # of operations.

• Nonlocal allows modifying variables not in local frame.

APPENDIX

• Other Runtime notation

• Dictionaries

ORDERS OF GROWTH

• n: size of problem

• R(n): amount of resource used (time or space)

• R(n) = Θ(f(n))

• k1 * f(n) ≤ R(n) ≤ k2 * f(n)

• Assume n is larger than some minimum m

ORDERS OF GROWTH

• n: size of problem

• R(n): amount of resource used (time or space)

• R(n) = Ω(f(n))

• k1 * f(n) ≤ R(n)

• Assume n is larger than some minimum m

ORDERS OF GROWTH

• n: size of problem

• R(n): amount of resource used (time or space)

• R(n) = O(f(n))

• R(n) ≤ k2 * f(n)

• where k1 and k2 are some constants and k1 ≤ k2

• Assume n is larger than some minimum m

ORDERS OF GROWTH

• Ω(f(n)) is a lower bound.

• O(f(n)) is an upper bound.

• Θ(f(n)) is a tight bound because it is both a lower bound and an
upper bound.

• Factorial is O(n2) and O(n). But the tightest bound is O(n2).

DICTIONARIES

• Dictionaries map keys to values.

• Python dictionaries are unordered.

• We can obtain a key’s mapped value by indexing into the
dictionary via the key.

• We can add key-value pairs anytime and can also replace a key’s
value with something else.

DICTIONARIES

• A dictionary key can be any immutable value.

• If we try to place an entry with a mutable key (i.e. list), we will get
an unhashable type error.

• We can check whether a dictionary contains a key with in.

• However, to check if a dictionary contains a value, need to iterate
through the dictionary

DICTIONARIES

>>> numerals = {"I" : 1, "II" : 2, "III" : 3}
>>> numerals["II"]
2
>>> numerals["IV"] = 4
>>> numerals
{"I" : 1, "II" : 2, "III" : 3, "IV" : 4}
>>> numerals["I"] = 100
>>> numerals
{"I" : 100, "II" : 2, "III" : 3, "IV" : 4}
>>> "I" in numerals
True
>>> 100 in numerals
False

DICTIONARIES

a = {"a":1, "b":2, "c":3, "d":4}
del a["a"]
{"b":2, "c":3, "d":4}
a.pop("d")
4
{"b":2, "c":3}

for key in dictionary

for key in dictionary.keys()

for value in dictionary.values()

for key, value in dictionary.items()

DICTIONARIES

• We can iterate over a dictionary’s keys.

• We can iterate over a dictionary’s values.

• We can iterate over a dictionary’s keys and values at the same
time.

for value in dictionary.values()

for key in dictionary

for key in dictionary.keys()

for key, value in dictionary.items()

DICTIONARIES

• We can delete a dictionary’s key-value pair with del.

• We can delete a key and return its value with pop.

a = {"a":1, "b":2, "c":3, "d":4}
del a["a"]
{"b":2, "c":3, “d":4}

a.pop("d")
4
{"b":2, "c":3}

