CS 61A
DISCUSSION 4

LIST MUTATION, ORDERS OF GROWTH, AND NONLOCAL

Raymond Chan
Discussion 134
UC Berkeley Fall 16

Announcements

List Mutation

Orders of Growth

Nonlocal

Appendix

e Dictionaries

ANNOUNCEMENTS

Maps due tonight
Lab 5 due Friday 9/30
CSM signups reopened

61A one-on-one tutoring

CHALLENGE QUESTION

* For those who runs through the packet, what is the order of the
growth for the function below?

def f(n):
dc-=¢ 9
while 1 < n:
print (1)
sb = el

CHALLENGE QUESTION

* For those who runs through the packet, what is the order of the
growth for the function below?

def f(n):
dc-=¢ 9
while 1 < n:
print (1)
sb = el

O(log log n)

CHALLENGE QUESTION

* For those who runs through the packet, what is the order of the
growth for the function below?

32
def f(n): 31
dc-=¢ 9
while 1 < n:
print (1)
sb = el

O(log log n)
O(log log n)

MUTATION

* When we define functions, we created function objects in
environment diagrams.

 When we create lists, we create list objects.

* We can change the elements of list objects after we've created it.

>22.a =1L, 4, 5]
S>>

[1e 2, 2]

>>> a[2] = 100
>>> 8

MUTATION

* When we define functions, we created function objects in
environment diagrams.

 When we create lists, we create list objects.

* We can change the elements of list objects after we've created it.

>22.a =1L, 4, 5]
S>>

[1e 2, 2]

>>> a[2] = 100
>>> 8

[F5 =2, EUD]

MUTATION

 |If | assign this variable a to variable b, b receives the reference.

* aand b is the same list as they are both referencing the same list

object

 a, b, and c have the same elements, but a and c are not the same
list

MUTATION

* When we assign a list to a variable, the variable references the list
object.

* If | pass in a variable that references a list to a function argument,
| am passing in the reference.

 This is similar to passing in a function object.

= [1, 2, 3] Global frame
m—) def func(lst): a
for i in range(®, len(lst)): func
Ist[i] = 1st[i] * 2

func func(lst) [parent=Global]
fl: func [parent=Global]

func(a) st

———

MUTATION

» Within the body of func, Ist’s values are changed. Notice that a’s
values are also changed because Ist references the same list a is

point to.

= [1, 2, 3]
def func(lst):
for i in range(0, len(lst)):
Ist[i] = 1st[i] * 2

func(a)

T —

Global frame

a

func

fl: func [parent=Global]

Ist
i 2

func func(lst) [parent=Global]

MUTATION

e Lists and dictionaries are mutable.

* Tuples and strings are immutable. Once they are created, they
cannot be changed.

Global frame
Ist & >

P \

0 |1
1

MUTATION

 |Ist.append(x) adds x to the end of the list.

* Only creates one new index. Global finame

a

a =i a, O
a.append(4)

a Global frame
2y 3 2] 2
a.append([5, 6])
a

2y 9y 4,713, O}]
len(a)

Frames

Global frame

2 3 4
S 1 3|4

MUTATION

* A list can append itself.

Global frame

a

a4 ,0e, o, 4
a.append(a)

a Global frame
2y 32y -0]] a
af4][3]

af4][41[41[2] Frames

Global frame

2 3 4
S 1 3|4

MUTATION

* Ist.extend(seq) appends each element of seq to list.

* seq can be a list or a tuple.

 tinyurl.com/mutation-q1

a bl 23]
b= 3, 4]
a.extend(b)

Global frame list
- > 0 1
a ‘1‘2
b ‘\

Global frame list

. >0
2 1

1

b
‘\Iist
0

http://tinyurl.com/mutation-q1

MUTATION

Ist.insert(i, x) inserts x at index i by adding a new element and not
replace the original element at i.

Global frame
e>>ta = [2, T

>>> a.insert(l, 55) c
>>> g

[1, 55, 2, 3]

Global frame
0 1
3 ./N

MUTATION

Ist.remove(x) removes the first time we see x in a list, otherwise
errors

S Sisrea s — []_, 2, 3, 2, 5]_] Global frame
>>> a.remove(2) a
> 2q

(17 5. 25 9, 1]

Global frame

a

MUTATION

* |st.pop(i) removes and returns the element at index i. By default, i
is the last element.

Global frame

d

Global frame

a

Global frame

a

MUTATION

+= for lists mutates the original list.

+= is different from a = a + [1] when a is a list.

Evaluating right hand side creates a new list and then assigns the
nest list to a.

o> an= -2, 3, 4] >>= g =a-+ [2]
>>> id(a) >>> g

<some id 1> s, 22 5= 355 5
>>>a #= [3] >>> id(a)

>>> a >>>

(1,2, 3, 4, 3] <some id 2>

>>> id(a)

<some id 1>

MUTATION

+= for lists mutates the original list, but is still a “reassignment”.
Thus the list needs to be in the local frame.
Using append or extend only require access to the list.

It can be in the parent frame.

MUTATION

def g():

gt = [el 2 = 3] e

deft f ()

lst.append(4) o

£()
print(lst)

MUTATION

>>>U st lee il 7 2] Isk2 1] =42

>>> 1st2 —dl1l, 297 3] 1st2

#compares each value

>>> lstl == 1lst2 lstl = 1stl + [5]
lstl == lst2

#compares references

>>>-1stl is lst2 1stl

lst2:. = 1kl 1st2
IstZ2 1s ‘1stl

1st2 1s lsil
1stl.append(4)

1stl

1st?2

MUTATION

>>>U st lee il 7 2] Isk2 1] =42

>>> 1st2 —dl1l, 297 3] 1st2

#compares each value

>>> 1stl == 1lst?2 st b=t lst]l £ 15|
True skl == It
#compares references

>>> 1stl is 1lst2 lstl

lst2:. = 1kl 1st2
IstZ2 1s ‘1stl

1st2 1s lsil
1stl.append(4)

1stl

1st?2

MUTATION

>>>U st lee il 7 2] Isk2 1] =42
>>> 1st2 —dl1l, 297 3] 1st2
#compares each value
>>> 1stl == 1lst2 st =slstl £-]5]
True lstl == 1lst2
#compares references
>>>-]gfl 15 lst2 1stl
False
>>> Jst2. = lsti 1st2
>>> lst2 15 cilstl

1st2 is 1stl
>>> lstl.append(4)
>>>]1stl

1st?2

MUTATION

>>>U st lee il 7 2] Isk2 1] =42
>>> 1st2 —dl1l, 297 3] 1st2
#compares each value

>>> 1stl == 1lst2 st =slstl £-]5]
True lstl == 1lst2
#compares references

>>>-]gfl 15 lst2 1stl

False

>>> Jst2. = lsti 1st2

>>> lst2 15 cilstl

True 1st2 is 1stl
>>> lstl.append(4)

>>>]1stl

>>> Jist 2

MUTATION

>>>U st lee il 7 2] Isk2 1] =42
>>> 1st2 —dl1l, 297 3] 1st2
#compares each value

>>> 1stl == 1lst2 st =slstl £-]5]
True lstl == 1lst2
#compares references

>>>-]gfl 15 lst2 1stl

False

>>> Jst2. = lsti 1st2

>>> lst2 15 cilstl

True 1st2 is 1stl
>>> lstl.append(4)

>>>]1stl

fd, 2 3, 4

>>> kst 2

MUTATION

>>>U st lee il 7 2] Isk2 1] =42
>>> 1st2 —dl1l, 297 3] 1st2
#compares each value

=>>> o] == gt st =slstl £-]5]
True 1stl == 1lst?2
#compares references

>>>-<lgtE] 18 lst2 1stl

False

>>>]1st2 = l1lstl 1st?2

>>> list?2 18 Ist]

True 1lst2 as 1lstl
>>> lstl.append(4)

>>> Tgat]

fd, 2 3, 4

>>> st 2

(L, 2 8 4

MUTATION

== 1stl:— 1. 7 3] 1st2[1] =42
>>> 1st2 —dl1l, 297 3] 1st2
#compares each value 4> 3. 4
=>>> o] == gt st =slstl £-]5]
True 1stl == 1lst?2
#compares references

>>>-<lgtE] 18 lst2 1stl

False

>>>]1st2 = l1lstl 1st?2

>>> list?2 18 Ist]

True 1lst2 as 1lstl
>>> lstl.append(4)

>>> Tgat]

fd, 2 3, 4

>>> st 2

(L, 2 8 4

MUTATION

== ek la=l - o]
>>> dst? =9l &9+ 3]
#compares each value
>>> 1stl == 1lst2
True

#compares references
>>> -1stl is Ist2
False

== IstZ2 = ISt

=>>> Ist2 1s lgstl
True

>>> 1lstl.append(4)
>>> 1stl

[1, 27 5, 4]

>>>]st2

[, 2.3, 4]

>>> 1st2[1] =42

>>>]st2

Fl, 42, 3. 49

== Iotdn=t 5t] 5]
>>>lst] == |st?
False

>>>alst |

>>>lat?

>>>lst?2 18 1stl

MUTATION

== ek la=l - o]
>>> dst? =9l &9+ 3]
#compares each value
>>> 1stl == 1lst2
True

#compares references
>>> -1stl is Ist2
False

== IstZ2 = ISt

=>>> Ist2 1s lgstl
True

>>> 1lstl.append(4)
>>> 1stl

[1, 27 5, 4]

>>>]st2

[, 2.3, 4]

>>> 1st2[1] =42

>>>]st2

Fl, 42, 3. 49

== Iotdn=t 5t] 5]
>>>lst] == |st?
False

>>>alst |

EL, 42523, 4.5

>>>]st2

>>>lst?2 18 1stl

MUTATION

== ek la=l - o]
>>> dst? =9l &9+ 3]
#compares each value
>>> 1stl == 1lst2
True

#compares references
>>> -1stl is Ist2
False

== IstZ2 = ISt

=>>> Ist2 1s lgstl
True

>>> 1lstl.append(4)
>>> 1stl

[1, 27 5, 4]

>>>]st2

[, 2.3, 4]

>>>
>>>
[1,
>>>
>>>

lst2[1] =42

1st2

42, 3, 4]
LstEdee=rlot]l £ 5]
lstl == 1lst2

False

>>>

[1,
>>>

[1,
>>>

1stl

42553, 4,-51]
1st?2

425 3, &
1st2 1is 1stl

MUTATION

== ek la=l - o]
>>> dst? =9l &9+ 3]
#compares each value
>>> 1stl == 1lst2
True

#compares references
>>> -1stl is Ist2
False

== IstZ2 = ISt

=>>> Ist2 1s lgstl
True

>>> 1lstl.append(4)
>>> 1stl

[1, 27 5, 4]

>>>]st2

[, 2.3, 4]

>>> 1st2[1] =42
>>>]st2

Fl, 42, 3. 49
== Iotdn=t 5t] 5]
>>>lst] == |st?
False

>>>alst |

EL, 42523, 4.5
>>>]st2

il dd, 3, 4]
>>>]1st2 is 1lstl
False

MUTATION

Write a function that removes all instances of an element from a list.

def remove all(el, 1lst):

22> X = [3,]., 2, 1, 5, 1! 1! 7]
z>> remove a1l X)

>E> =

(572, 5 1]

MUTATION

Write a function that removes all instances of an element from a list.

def remove all(el, 1lst):
22> X = [3,]., 2, 1, 5, 1! 1! 7]
z>> remove a1l X)
>>> x

[Sr27 o5 7]

while el in 1lst:
lst.remove(el)

MUTATION

Write a function that takes two values x1 and el, and a list, and adds as many el'’s
to the end of this lists there are x’s.

def add this many(x, el, ‘l5tj)=
""" Adds el to the end of 1lst the number of times X occurs
n-lsta
22 dstbe= [l 224, 24
=>> add this many(l;=5,-1st)
>>> st
Bl,o 2 ddo sd - 5o=b]
=>>> add this many{(2, 2, “1st)
>>>]1st
[1,

MUTATION

Write a function that takes two values x1 and el, and a list, and adds as many el’s
to the end of this lists there are x’s.

def add this many(x, el, 1lst):

""" Adds el to the end of 1lst the number of times X occurs
In-lsta
22 dstbe= [l 224, 24
=>> add this many(l;=5,-1st)
>>> st
Bl,o 2 ddo sd - 5o=b]
=>>> add this many{(2, 2, “1st)
>>>]1st
[1,
count =
for element in 1lst:

if element == x:

count +=-1

while count > 0:

lst.append(el)

count -= 1

MUTATION

Write a function that takes two values x1 and el, and a list, and adds as many el’s
to the end of this lists there are x’s.

def add this many(x, el, 1lst):

""" Adds el to the end of lst the number of times X occurs
In-lsta
== Ise-=[1, 2, 4, 2; 14
=>> add this many(l;=5,-1st)
S fgik

Fl,o 2 4.2 54 Br=h]
=>>> add this many{(2, 2, “1st)
>>> 1st

s <
B Wrong solutions because the
count = elements are added to the end

for element im 1st: of the list as you iterate. Thus it
1f element == x:

count += 1

for el in lst:
if el == x:
lst.append(el)

could be iterating for ever.

while count > 0: add_this_many(Z, 2, Ist)
lst.append(el)
count -= 1

ORDERS OF GROWTH

When we have really large inputs, we need to worry about
efficiency.

We measure efficiency by runtime (Time complexity).

How long does the functions take to run in terms of the size of
the input?

If the size of the input grows, how does the runtime change?

ORDERS OF GROWTH

* We use Big-O notation means a tight bound on time complexity.

* O(n?) means that the function’s runtime is no larger and no smaller
than quadratic of the input.

ORDERS OF GROWTH

n: size of problem

R(n): amount of resource used (time or space)
R(n) = O(f(n))

ki * f(n) < R(n) < k> * f(n)

where k1 and ks are some constants and k; < k>

Assume n is larger than some minimum m

ORDERS OF GROWTH

def square(n): 1 primitive operation *
return n = n For our purposes, * is constant time

function call number of number of operations

square(1) 1] 1
square(2) 7 1

square(100) 100*100

square(n) n*n

ORDERS OF GROWTH

def square(n): 1 primitive operation *
return n = n For our purposes, * is constant time

O(1)

function call number of number of operations

square(1) 1] 1
square(2) 7 1

square(100) 100*100

square(n) n*n

ORDERS OF GROWTH

def factorial(n): Each recursive call has
if n = 0: a constant amount operations.

return 1 But we have n recursive calls
return n * factorial(n = 1)

input | function call return value number of operations
1 factorial(1) e 1
2 factorial(2) 2 2

100 | factorial(100) 00 905, =}

faCtOrial(n) n*(n_‘l)*”.*—]*‘]

ORDERS OF GROWTH

def factorial(n): Each recursive call has
if n = 0: a constant amount operations.

return 1 But we have n recursive calls
return n * factorial(n = 1)

O(n)

input | function call return value number of operations
1 factorial(1) e 1
2 factorial(2) 2 2

100 | factorial(100) 00 905, =}

faCtOrial(n) n*(n_‘l)*”.*—]*‘]

ORDERS OF GROWTH

©(1) - constant time; same time regardless of input size.

©(log n) - logarithmic time; e.g. usually dividing the problem
down by some factor.

©(n) - linear time; e.g. usually 1 loop
©(n?), ©(n3), etc - polynomial time; e.g. nested loops

©(c") - exponential time; where c is some constant; really horrible
time complexity; e.g. tree recursion

ORDERS OF GROWTH

» Constant time is the best and exponential is the worse.
* Any polynomial is worse than any logarithmic.

* Higher degree polynomial worse than lower degree.

ORDERS OF GROWTH

Big-O Complexity Chart

Horrible||Bad||Fair||Good||Excellent

O(n"2) For this class,

assume O is O.

See appendix,
for other runtime
notation.

2]
c
9
—
o
S
@)

O(n)

~ Oflog n), O(1).

Elements

Creds: http://bigocheatsheet.com/

http://bigocheatsheet.com/

ORDERS OF GROWTH

Since we care about the runtime when n gets infinitely large, we
can drop lower order terms and constants.

e O(2n3 + 6n + log(n)) = O(n3)

Should always provide the tightest bound.

ORDERS OF GROWTH

Count the number of iterations and/or recursive calls.
Find the number of operations per iteration or recursive call.
Nested loops are usually some polynomial time.
Exponential time are usually tree recursive.

Beware of return statements because it exits out of a frame
before the loops are finished.

NONLOCAL

* We could only access variables in parent frames and not modify
them.

* Nonlocal allows us to modify variables in parents frame and
outside of the current frame.

NONLOCAL

* We could only access variables in parent frames and not modify
them.

* Nonlocal allows us to modify variables in parents frame and
outside of the current frame.

def stepper(num):
def step():

num = num + 1
return num
return step

NONLOCAL

* We could only access variables in parent frames and not modify
them.

* Nonlocal allows us to modify variables in parents frame and
outside of the current frame.

def stepper(num):
def step(): Error: We are trying to use num before
we assigned it
num = num + 1
return num
return step

NONLOCAL

* We could only access variables in parent frames and not modify
them.

* Nonlocal allows us to modify variables in parents frame and
outside of the current frame.

def stepper(num):
def step(): In step’s frame, does not
nonlocal num try to find num in local frame.
num = num + 1
return num
return step

NONLOCAL

* We could only access variables in parent frames and not modify
them.

* Nonlocal allows us to modify variables in parents frame and
outside of the current frame.

def stepper(num):
def step(): For environment diagrams,
o ocanun num is not a variable in any
num = num + 1
return num
return step

of step’s frames.

NONLOCAL

» Variables in the global frame cannot be modified using nonlocal.

» Variables in the current frame cannot be overridden using
nonlocal.

e Cannot have a local and nonlocal variable with the same names.
in a single frame.

def stepper(num):
def step():
nonlocal num
num = num + 1
return num
return step

NONLOCAL

* What is wrong with the following code?

=5
def another add one():
nonlocal a
a += 1
another add. .one()

NONLOCAL

* What is wrong with the following code?

=5
def another add one():
nonlocal a
a += 1
another add. .one()

a is a variable in the global frame.
Nonlocal cannot be used to modify variables in the global frame.

NONLOCAL

* What is wrong with the following code?

def adder(x):
def add(y):
nonlocal x, y
X = Y
return X
return add
adder(2) (3)

NONLOCAL

* What is wrong with the following code?

def adder(x):
def add(y): y does not exist in any parent frames.
nonlocal x, y It is a local variable
X = Y
return X
return add
adder(2) (3)

NONLOCAL

* What is wrong with the following code?

def adder(x):
Z2ei==5
def add(y):
7 =8
nonlocal x, 2z
X =7
return X
return add
adder(2) (3)

RECAP

Lists and dictionaries are mutable. Tuples and strings are immutable.

Python list objects are references with pointers. When calling functions that
takes a list, we pass in the reference (or pointer) and not create a new list.

Orders of growth tells us how long the running time of the function approach as
n approach infinity.

Constant is better than logarithmic, which is better than polynomial, which is
better than exponential.

Lower polynomial is better than higher polynomial.
Try drawing a call stack or tree to count the # of operations.

Nonlocal allows modifying variables not in local frame.

APPENDIX

e Other Runtime notation

e Dictionaries

ORDERS OF GROWTH

n: size of problem

R(n): amount of resource used (time or space)
R(n) = O(f(n))

ki * f(n) < R(n) < k> * f(n)

Assume n is larger than some minimum m

ORDERS OF GROWTH

n: size of problem

R(n): amount of resource used (time or space)
R(n) = Q(f(n))

ki * f(n) < R(n)

Assume n is larger than some minimum m

ORDERS OF GROWTH

n: size of problem

R(n): amount of resource used (time or space)
R(n) = O(f(n))

R(n) < k> * f(n)

where k1 and ks are some constants and k; < k>

Assume n is larger than some minimum m

ORDERS OF GROWTH

» Q(f(n)) is a lower bound.
e O(f(n)) is an upper bound.

* O(f(n)) is a tight bound because it is both a lower bound and an
upper bound.

* Factorial is O(n?) and O(n). But the tightest bound is O(n?).

DICTIONARIES

Dictionaries map keys to values.
Python dictionaries are unordered.

We can obtain a key’'s mapped value by indexing into the
dictionary via the key.

We can add key-value pairs anytime and can also replace a key’s
value with something else.

DICTIONARIES

A dictionary key can be any immutable value.

If we try to place an entry with a mutable key (i.e. list), we will get
an unhashable type error.

We can check whether a dictionary contains a key with in.

However, to check if a dictionary contains a value, need to iterate
through the dictionary

DICTIONARIES

numerals = {"I"
numerals["II"]
2
>>> numerals["IV"] =
>>> numerals
fUas sl BTTC F o3 SlITTHer 3, UPVE L 4

(4
>>> numerals["I"] = 100
>>> numerals
S s 100, ITT S0 NTER D83, TTU e 4
>>> "TI" in numerals
True
>>> 100 in numerals
False

DICTIONARIES

a = d-a 1, bt - ccrd o n
del a["a"]

b - n e 3G desd)

a.poep(d)

4

{||b||:2, ||c||:3}

for key in dictionary

for key in dictionary.keys|()

for value in dictionary.values()

for key, value in dictionary.items|()

DICTIONARIES

* We can iterate over a dictionary’s keys.

for key in dictionary

for key in dictionary.keys()

* We can iterate over a dictionary’s values.

for value in dictionary.values|()

* We can iterate over a dictionary’s keys and values at the same
time.

for key, value in dictionary.items|()

DICTIONARIES

* We can delete a dictionary’s key-value pair with del.

* We can delete a key and return its value with pop.

a.pop(lldll)
4
{llb":z, "C":3}

