
CS 61A
DISCUSSION 5

OBJECT ORIENTED PROGRAMMING

Raymond Chan
Discussion 134

UC Berkeley Fall 16

AGENDA

• Announcements

• Practice Question

• O.O.P

• Advanced section slides online.

• Inheritance

• Challenge Questions

ANNOUNCEMENTS

• Ants due 10/14 (submit early for extra point)

• HW 6 due tonight (HW Party 6:30-8:30)

• HW 7 due 10/11

• Guerrilla Section on objects and growth

• 1 on 1 tutoring

• Lab 6 due Friday

CHALLENGE QUESTION 1
2.3 SUMMER 2013 FINAL

class A:
def f(self):

return 2
def g(self, obj, x):

if x == 0:
return A.f(obj)

return obj.f() + self.g(self, x - 1)

class B(A):
def f(self):

return 4

>>> x, y = A(), B()
>>> x.f()

>>> B.f()

>>> x.g(x, 1)

>>> y.g(x, 2)

CHALLENGE QUESTION 2

• Implement the Yolo class so that the following interpreter session
works as expected (Summer 2013 Final).

>>> x = Yolo(1)
>>> x.g(3)
4
>>> x.g(5)
6
>>> x.motto = 5
>>> x.g(5)
10

2.3 SUMMER 2013 FINAL

PRACTICE QUESTION

PRACTICE QUESTION

All operations are constant time,
including Poly(1).

Iterate until k reaches 0.
In each iteration, whether k is odd or even,

we call mult, a constant time operation.
k is reduced by half at each step.

Thus Θ(log k)

OBJECT ORIENTED PROGRAMMING

• Treat data as objects (like real life).

• We can mutate an object’s data rather than recreate it.

• A class serves as a template for creating objects.

class Dog(object):
num_legs = 4

def __init__(self, name, color):
self.name = name
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing))

OBJECT ORIENTED PROGRAMMING

• To create an object from the class, we need to create an
instance of a class.

• Initializing an instance calls the __init__ method.

class Dog(object):
num_legs = 4

def __init__(self, name, color):
self.name = name
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing))

>>> buddy = Dog("Buddy", "Gold")
>>> molly = Dog("Molly", "White")
>>> buddy.name
"Buddy"
>>> molly.color
"White"

OBJECT ORIENTED PROGRAMMING

• Every dog has certain details but are unique to the dog.

• These are instance attributes (name, color).

class Dog(object):
num_legs = 4

def __init__(self, name, color):
self.name = name
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing))

>>> buddy = Dog("Buddy", "Gold")
>>> molly = Dog("Molly", "White")
>>> buddy.name
"Buddy"
>>> molly.color
"White"

OBJECT ORIENTED PROGRAMMING

• Remember to set instance attributes in the __init__ class.

• Otherwise the arguments passed in would be lost.

• Instance attributes can be set in other functions too.

class Dog(object):
num_legs = 4

def __init__(self, name, color):
self.name = name
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing))

OBJECT ORIENTED PROGRAMMING

• Attributes that shared among all instance are class attributes
(num_legs).

class Dog(object):
num_legs = 4

def __init__(self, name, color):
self.name = name
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing))

>>> buddy = Dog("Buddy", "Gold")
>>> molly = Dog("Molly", "White")
>>> buddy.num_legs
4
>>> molly.num_legs
4

OBJECT ORIENTED PROGRAMMING

• Instances can have an instance attribute that override the
class attribute.

class Dog(object):
num_legs = 4

def __init__(self, name, color):
self.name = name
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing))

>>> buddy = Dog("Buddy", "Gold")
>>> molly = Dog("Molly", "White")
>>> buddy.num_legs = 5
>>> buddy.num_legs
5
>>> Dog.num_legs
4
>>> molly.num_legs
4

OBJECT ORIENTED PROGRAMMING

• Objects have actions that belong to the object.

• Bound methods are functions that all instances can call.

class Dog(object):
num_legs = 4

def __init__(self, name, color):
self.name = name
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing))

>>> buddy = Dog("Buddy", "Gold")
>>> molly = Dog("Molly", "White")
>>> buddy.eat("food")
Buddy ate a food
>>> molly.eat("candy")
Molly ate a candy
>>> buddy.eat("food

OBJECT ORIENTED PROGRAMMING

• The self argument is passed in implicitly if you invoke the
method via the instance.

• We can also call it from the class, but we must pass in an
instance.

class Dog(object):
num_legs = 4

def __init__(self, name, color):
self.name = name
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing))

>>> buddy = Dog("Buddy", "Gold")
>>> molly = Dog("Molly", "White")
>>> buddy.eat("food")
Buddy ate a food
>>> Dog.eat(buddy, "food")
Buddy ate a food
>>> Dog.eat("stuff")
Error (not enough arguments)

OBJECT ORIENTED PROGRAMMING

• A function instead a class without self as the first parameter
is simply a function.

• Cannot access class and instance attributes.

class Dog(object):
num_legs = 4

def __init__(self, name, color):
self.name = name
self.color = color

def eat(thing):
print("ate a ", thing)

 def eat1(thing):

print(num_legs, "ate a", thing)

>>> buddy = Dog("Buddy", "Gold")
>>> Dog.eat("food")
ate a food
>>> buddy.eat("candy")
Error (too many arguments)
>>> Dog.eat1("candy")
Error (no global variable num_legs)

OBJECT ORIENTED PROGRAMMING
Q1

class Student:
 instructor = dumbledore

 def __init__(self, name, ta):
 self.name = name
 self.understanding = 0
 ta.add_student(self)

 def attend_lecture(self, topic):
 self.instructor.lecture(topic)
 print(Student.instructor.name + " is awesome!")
 self.understanding += 1

 def visit_office_hours(self, staff):
 staff.assist(self)
 print("Thanks, " + staff.name)

class Instructor:
 degree = “PhD (Magic)”
 def __init__(self, name):
 self.name = name

 def lecture(self, topic):
 print("Today we're learning about " + topic)

dumbledore = Instructor("Dumbledore")

class TeachingAssistant:
 def __init__(self, name):
 self.name = name
 self.students = {}

 def add_student(self, student):
 self.students[student.name] = student

 def assist(self, student):
 student.understanding += 1

OBJECT ORIENTED PROGRAMMING
Q1

>>> snape = TeachingAssistant("Snape")
>>> harry = Student("Harry", snape)
>>> harry.attend_lecture("potions")

>>> hermione = Student("Hermione", snape)
>>> hermione.attend_lecture("herbology")

>>> hermione.visit_office_hours(TeachingAssistant("Hagrid"))

>>> harry.understanding

>>> snape.students["Hermione"].understanding

>>> Student.instructor = Instructor("Umbridge")
>>> Student.attend_lecture(harry, "transfiguration")

OBJECT ORIENTED PROGRAMMING
Q1

>>> snape = TeachingAssistant("Snape")
>>> harry = Student("Harry", snape)
>>> harry.attend_lecture("potions")
Today we're learning about potions
Dumbledore is awesome!
>>> hermione = Student("Hermione", snape)
>>> hermione.attend_lecture("herbology")

>>> hermione.visit_office_hours(TeachingAssistant("Hagrid"))

>>> harry.understanding

>>> snape.students["Hermione"].understanding

>>> Student.instructor = Instructor("Umbridge")
>>> Student.attend_lecture(harry, "transfiguration")

OBJECT ORIENTED PROGRAMMING
Q1

>>> snape = TeachingAssistant("Snape")
>>> harry = Student("Harry", snape)
>>> harry.attend_lecture("potions")
Today we're learning about potions
Dumbledore is awesome!
>>> hermione = Student("Hermione", snape)
>>> hermione.attend_lecture("herbology")
Today we’re learning about herbology
Dumbledore is awesome!
>>> hermione.visit_office_hours(TeachingAssistant("Hagrid"))

>>> harry.understanding

>>> snape.students["Hermione"].understanding

>>> Student.instructor = Instructor("Umbridge")
>>> Student.attend_lecture(harry, "transfiguration")

OBJECT ORIENTED PROGRAMMING
Q1

>>> snape = TeachingAssistant("Snape")
>>> harry = Student("Harry", snape)
>>> harry.attend_lecture("potions")
Today we're learning about potions
Dumbledore is awesome!
>>> hermione = Student("Hermione", snape)
>>> hermione.attend_lecture("herbology")
Today we’re learning about herbology
Dumbledore is awesome!
>>> hermione.visit_office_hours(TeachingAssistant("Hagrid"))
Thanks, Hagrid
>>> harry.understanding

>>> snape.students["Hermione"].understanding

>>> Student.instructor = Instructor("Umbridge")
>>> Student.attend_lecture(harry, "transfiguration")

OBJECT ORIENTED PROGRAMMING
Q1

>>> snape = TeachingAssistant("Snape")
>>> harry = Student("Harry", snape)
>>> harry.attend_lecture("potions")
Today we're learning about potions
Dumbledore is awesome!
>>> hermione = Student("Hermione", snape)
>>> hermione.attend_lecture("herbology")
Today we’re learning about herbology
Dumbledore is awesome!
>>> hermione.visit_office_hours(TeachingAssistant("Hagrid"))
Thanks, Hagrid
>>> harry.understanding
1
>>> snape.students["Hermione"].understanding

>>> Student.instructor = Instructor("Umbridge")
>>> Student.attend_lecture(harry, "transfiguration")

OBJECT ORIENTED PROGRAMMING
Q1

>>> snape = TeachingAssistant("Snape")
>>> harry = Student("Harry", snape)
>>> harry.attend_lecture("potions")
Today we're learning about potions
Dumbledore is awesome!
>>> hermione = Student("Hermione", snape)
>>> hermione.attend_lecture("herbology")
Today we’re learning about herbology
Dumbledore is awesome!
>>> hermione.visit_office_hours(TeachingAssistant("Hagrid"))
Thanks, Hagrid
>>> harry.understanding
1
>>> snape.students["Hermione"].understanding
2
>>> Student.instructor = Instructor("Umbridge")
>>> Student.attend_lecture(harry, "transfiguration")

OBJECT ORIENTED PROGRAMMING
Q1

>>> snape = TeachingAssistant("Snape")
>>> harry = Student("Harry", snape)
>>> harry.attend_lecture("potions")
Today we're learning about potions
Dumbledore is awesome!
>>> hermione = Student("Hermione", snape)
>>> hermione.attend_lecture("herbology")
Today we’re learning about herbology
Dumbledore is awesome!
>>> hermione.visit_office_hours(TeachingAssistant("Hagrid"))
Thanks, Hagrid
>>> harry.understanding
1
>>> snape.students["Hermione"].understanding
2
>>> Student.instructor = Instructor("Umbridge")
>>> Student.attend_lecture(harry, "transfiguration")
Today we're learning about transfiguration
Umbridge is awesome!

Since the class attribute changed, the instance
accessed the new instructor instance.

INHERITANCE

class Dog(object):
def __init__(self, name, owner, color):

self.name = name
self.owner = owner
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name + " says woof!")

class Cat(object):
def __init__(self, name, owner, lives=9):

self.name = name
self.owner = owner
self.lives = lives

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name + " says meow!")

INHERITANCE

• Both Dog and Cat classes do pretty much the same thing
with a few specific differences.

• Rather than repeat so much code, we can make use of
inheritance.

• A class can inherit the class attributes, instance attributes,
and methods of a another class.

INHERITANCE

• The Bar class inherits from the Foo class.

• Foo is the base class.

• inheriting from

• Bar is the sub class.

• does the inheriting

• By default Python objects inherits from the object class.

class Foo(object):

class Bar(Foo):

INHERITANCE

• The Bar class inherits from the Foo class.

• Foo is the base class.

• inheriting from

• Bar is the sub class.

• does the inheriting

class Foo(object):

class Bar(Foo):

INHERITANCE

• The Bar class inherits from the Foo class.

• Foo is the base class.

• inheriting from

• Bar is the sub class.

• does the inheriting

• By default Python objects inherits from the object class.

class Foo():

class Bar(Foo):

INHERITANCE

• Inheritance make use of a is-a hierarchical relationship.

class Pet(object):
def __init__(self, name, owner):

self.is_alive = True
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Dog(Pet):
def __init__(self, name, owner, color):

Pet.__init__(self, name, owner)
self.color = color

def talk(self):
print(self.name + " says woof!")

INHERITANCE

• A Dog is a Pet, and thus the Dog class can inherit the Pet
class.

class Pet(object):
def __init__(self, name, owner):

self.is_alive = True
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Dog(Pet):
def __init__(self, name, owner, color):

Pet.__init__(self, name, owner)
self.color = color

def talk(self):
print(self.name + " says woof!")

INHERITANCE

• By redefining __init__ and talk, the subclass overrides the
base class’s methods.

class Pet(object):
def __init__(self, name, owner):

self.is_alive = True
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Dog(Pet):
def __init__(self, name, owner, color):

Pet.__init__(self, name, owner)
self.color = color

def talk(self):
print(self.name + " says woof!")

INHERITANCE

• The Dog class’s __init__ uses the base class’s __init__.

class Pet(object):
def __init__(self, name, owner):

self.is_alive = True
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Dog(Pet):
def __init__(self, name, owner, color):

Pet.__init__(self, name, owner)
self.color = color

def talk(self):
print(self.name + " says woof!")

INHERITANCE

• Uses the base class’s methods but adds attributes (self.color)
and/or actions that are unique to the subclass.

class Pet(object):
def __init__(self, name, owner):

self.is_alive = True
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Dog(Pet):
def __init__(self, name, owner, color):

Pet.__init__(self, name, owner)
self.color = color

def talk(self):
print(self.name + " says woof!")

INHERITANCE
2.1 CAT

class Pet(object):
def __init__(self, name, owner):

self.is_alive = True
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Cat(Pet):
def __init__(self, name, owner, lives=9):

def talk(self):

def lose_life(self):

INHERITANCE
2.1 CAT

class Pet(object):
def __init__(self, name, owner):

self.is_alive = True
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Cat(Pet):
def __init__(self, name, owner, lives=9):

Pet.__init__(self, name, owner)
self.lives = lives

def talk(self):

def lose_life(self):

Make use of the base class’s
__init__.

A Cat is different from a Pet
because it has multiple lives.

Add self.lives instance attribute.

INHERITANCE
2.1 CAT

class Pet(object):
def __init__(self, name, owner):

self.is_alive = True
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Cat(Pet):
def __init__(self, name, owner, lives=9):

Pet.__init__(self, name, owner)
self.lives = lives

def talk(self):
print(self.name + " says meow!”)

def lose_life(self):

INHERITANCE
2.1 CAT

class Pet(object):
def __init__(self, name, owner):

self.is_alive = True
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Cat(Pet):
def __init__(self, name, owner, lives=9):

Pet.__init__(self, name, owner)
self.lives = lives

def talk(self):
print(self.name + " says meow!”)

def lose_life(self):
if self.lives > 0:

self.lives -= 1
if self.lives == 0:

self.is_alive = False
else:

print("No more lives.")

Since the base class has an instance
attribute of self.is_alive,

we need to set the Cat’s self.is_alive to False.

INHERITANCE
2.2 NOISY CAT

class NoisyCat(Cat):
"""A Cat that repeats things twice."""
def __init__(self, name, owner, lives=9):

def talk(self):

INHERITANCE
2.2 NOISY CAT

class NoisyCat(Cat):
"""A Cat that repeats things twice."""
def __init__(self, name, owner, lives=9):

Is this method necessary? Why or why not?
Cat.__init__(self, name, owner, lives)

def talk(self):
We don’t actually need an __init__.

Since NoisyCat inherits from Cat, any new instance
will call Cat’s __init__.

We are not doing anything new either.

INHERITANCE
2.2 NOISY CAT

class NoisyCat(Cat):
"""A Cat that repeats things twice."""
def __init__(self, name, owner, lives=9):

Is this method necessary? Why or why not?
Cat.__init__(self, name, owner, lives)

def talk(self):
Cat.talk(self)
Cat.talk(self)

Make use of the base class’s
method by calling it twice.

RECAP

• OOP allows use to treat data as objects.

• Class serves as a template for instance objects.

• Use inheritance to avoid repeating code on if there is a “is-a”
relationship between the two classes.

