CS 61A
DISCUSSION 5

OBJECT ORIENTED PROGRAMMING

Raymond Chan
Discussion 134
UC Berkeley Fall 16

Announcements

Practice Question

O.0.P

« Advanced section slides online.

Inheritance

Challenge Questions

ANNOUNCEMENTS

Ants due 10/14 (submit early for extra point)
HW 6 due tonight (HW Party 6:30-8:30)

HW 7 due 10/11

Guerrilla Section on objects and growth

1 on 1 tutoring

Lab 6 due Friday

CHALLENGE QUESTION 1

2.3 SUMMER 2013 FINAL

class A:
def f(self):
return 2
def g(self, obj, x):
it x —
return A.f(obj)
return obj.f() t selfig(self i x = 1)

class B(A):
def f(self):

return 4

222 Xp oy =<0}, Bl
>>> x.£()

>>>
>>>

>>>

CHALLENGE QUESTION 2

2.3 SUMMER 2013 FINAL

* Implement the Yolo class so that the following interpreter session
works as expected (Summer 2013 Final).

=-Yolo(l)
-g(3)

.g(>)

.motto = 5
-g(5)

PRACTICE QUESTION

(d) (1.5 pt) Consider the following function for computing powers of a polynomial:

def polypow(P, k):

""UP xx k, where P is a polynomial and K is a
non-negative integer."""
result = Poly(1)
while k != 0:

if k % 2 ==

result = result.mult(P)
P = P.mult(P)
k=k// 2

Circle the order of growth that best describes the worst-case execution time of polypow, as a function of k,
where execution time is measured in the number of times that the .mult method is called.

A. O(k)
. O(k?)
. O(Vk)
. O(logk)
. O(2%)

PRACTICE QUESTION

(d) (1.5 pt) Consider the following function for computing powers of a polynomial:

def polypow(P, k):
""UP xx k, where P is a polynomial and K is a
non-negative integer."""

result = Poly(1) All operations are constant time,
while k != 0:

if k % 2 == 1: including Poly(1).
result = result.mult(P)

P = P.mult(P)

k =k // 2

Circle the order of growth that best describes the worst-case execution time of polypow, as a function of k,
where execution time is measured in the number of times that the .mult method is called.

A. (k) lterate until k reaches O.
. O(k?) In each iteration, whether k is odd or even,
- oWF) we call mult, a constant time operation.

k is reduced by half at each step.
Thus O(log k)

B
C
D. ©(logk)
E

. ©(2%)

OBJECT ORIENTED PROGRAMMING

» Treat data as objects (like real life).
* We can mutate an object’s data rather than recreate it.

* A class serves as a template for creating objects.

class Dog(object):
num legs = 4

def init (self, name, color):
self.name = name
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing))

OBJECT ORIENTED PROGRAMMING

* To create an object from the class, we need to create an
instance of a class.

* Initializing an instance calls the __init__ method.

>>> buddy = Dog("Buddy", "Gold")
>>> molly = Dog("Molly", "White")
>>> buddy.name

"Buddy "

>>> molly.color

hhites

class Dog(object):
num legs = 4

def init (self, name, color):
self.name = name
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing))

OBJECT ORIENTED PROGRAMMING

* Every dog has certain details but are unique to the dog.

 These are instance attributes (hame, color).

>>> buddy = Dog("Buddy", "Gold")
>>> molly = Dog("Molly", "White")
>>> buddy.name

"Buddy "

>>> molly.color

hhites

class Dog(object):
num legs = 4

def init (self, name, color):
self.name = name
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing))

OBJECT ORIENTED PROGRAMMING

e Remember to set instance attributes in the init class.
* Otherwise the arguments passed in would be lost.

 |nstance attributes can be set in other functions too.

class Dog(object):
num legs = 4

def init (self, name, color):
self.name = name
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing))

OBJECT ORIENTED PROGRAMMING

* Attributes that shared among all instance are class attributes
(num_legs).

>>> buddy = Dog("Buddy", "Gold")
>>> molly = Dog("Molly", "White")
>>> buddy.num legs

4

>>> molly.num legs

4

class Dog(object):
num legs = 4

def init (self, name, color):
self.name = name
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing))

OBJECT ORIENTED PROGRAMMING

 |nstances can have an instance attribute that override the
class attribute.

buddy = Dog("Buddy", "Gold")
molly = Dog("Molly", "White")
buddy.num legs = 5

buddy.num legs

class Dog(object):
num legs = 4

def init (self, name, color):
self.name = name
self.color = color

Dog.num legs

molly.num legs

4
def eat(self, thing):

print(self.name + " ate a " + str(thing))

OBJECT ORIENTED PROGRAMMING

* Objects have actions that belong to the object.

e Bound methods are functions that all instances can call.

>>> buddy = Dog("Buddy", "Gold")
>>> molly = Dog("Molly", "White")
>>> buddy.eat("food")

Buddy ate a food

>>> molly.eat("candy")

Molly ate a candy

>>> buddy.eat("food

class Dog(object):
num legs = 4

def init (self, name, color):
self.name = name
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing))

OBJECT ORIENTED PROGRAMMING

The self argument is passed in implicitly if you invoke the
method via the instance.

We can also call it from the class, but we must pass in an

iInstance.

>>> buddy = Dog("Buddy", "Gold")
>>> molly = Dog("Molly", "White")
>>> buddy.eat("food")

Buddy ate a food

>>> Dog.eat(buddy, "food")

Buddy ate a food

>>> Dog.eat("stuff")

Error (not enough arguments)

class Dog(object):
num legs = 4

def init (self, name, color):
self.name = name
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing))

OBJECT ORIENTED PROGRAMMING

* A function instead a class without self as the first parameter
is simply a function.

e Cannot access class and instance attributes.

class Dog(object):
num legs = 4

def 1nit (self,
self.name = name

name, color):

self.color = color

def eat(thing):
print("ate a

def eatl(thing):
print (num legs,

, thing)

"ate a", thing)

>>> buddy = Dog("Buddy", "Gold")
>>> Dog.eat("food")

ate a food

>>> buddy.eat("candy")

Error (too many arguments)

>>> Dog.eatl("candy")

Error (no global variable num legs)

OBJECT ORIENTED PROGRAMMING

Ql

class Student: class Instructor:
instructor = dumbledore degree = “PhD (Magic)”
def init (self, name):
def init (self, name, ta): self.name = name

self.name = name

self.understanding = 0 def lecture(self, topic):
ta.add student(self) print("Today we're learning about

" + topic)
attend ‘lecture(self, topic): dumbledore = Instructor("Dumbledore")

self.instructor.lecture(topic)
print (Student.instructor.name +
self.understanding += 1

is awesome!")

visit office hours(self, staff): class TeachingAssistant:
staff.assist(self) def © init (self; namej:

print ("Thanks, " + staff.name) self.name = name
self.students = {}

def add student(self, student):
self.students[student.name] = student

def assist(self, student):
student.understanding += 1

OBJECT ORIENTED PROGRAMMING

Ql

snape = TeachingAssistant("Snape")
harry = Student("Harry", snape)
harry.attend lecture("potions")

hermione = Student("Hermione", snape)

hermione.attend lecture("herbology")
hermione.visit office hours(TeachingAssistant("Hagrid"))
harry.understanding
snape.students["Hermione"] .understanding

Student.instructor = Instructor("Umbridge")
Student.attend lecture(harry, "transfiguration")

OBJECT ORIENTED PROGRAMMING

Ql

>>> gnape = TeachingAssistant("Snape')
>>> harry = Student("Harry", snape)

>>> harry.attend lecture("potions")

Today we 're learning about potions
Dumbledore is awesome!

>>> hermione = Student("Hermione", snape)
>>> hermione.attend lecture("herbology")

hermione.visit office hours(TeachingAssistant("Hagrid"))

harry.understanding

snape.students["Hermione"] .understanding

Student.instructor = Instructor("Umbridge")
Student.attend lecture(harry, "transfiguration")

OBJECT ORIENTED PROGRAMMING

Ql

>>> gnape = TeachingAssistant("Snape')

>>> harry = Student("Harry", snape)

>>> harry.attend lecture("potions")

Today we 're learning about potions

Dumbledore is awesome!

>>> hermione = Student("Hermione", snape)

>>> hermione.attend lecture("herbology")

Today we’'re learning about herbology

Dumbledore is awesome!

>>> hermione.visit office hours(TeachingAssistant("Hagrid"))

harry.understanding
snape.students["Hermione"] .understanding

Student.instructor = Instructor("Umbridge")
Student.attend lecture(harry, "transfiguration")

OBJECT ORIENTED PROGRAMMING

Ql

>>> gnape = TeachingAssistant("Snape')
>>> harry = Student("Harry", snape)

>>> harry.attend lecture("potions")

Today we 're learning about potions
Dumbledore is awesome!

>>> hermione = Student("Hermione", snape)
>>> hermione.attend lecture("herbology")
Today we’'re learning about herbology
Dumbledore is awesome!

>>> hermione.visit office hours(TeachingAssistant("Hagrid"))
Thanks, Hagrid

>>> harry.understanding

>>> snape.students|["Hermione"].understanding

>>> Student.instructor = Instructor("Umbridge")
>>> Student.attend lecture(harry, "transfiguration")

OBJECT ORIENTED PROGRAMMING

Ql

>>> gnape = TeachingAssistant("Snape')

>>> harry = Student("Harry", snape)

>>> harry.attend lecture("potions")

Today we 're learning about potions
Dumbledore is awesome!

>>> hermione = Student("Hermione", snape)
>>> hermione.attend lecture("herbology")
Today we’'re learning about herbology
Dumbledore is awesome!

>>> hermione.visit office hours(TeachingAssistant("Hagrid"))
Thanks, Hagrid

>>> harry.understanding

i

>>> gnape.students["Hermione"].understanding

>>> Student.instructor = Instructor("Umbridge")
>>> Student.attend lecture(harry, "transfiguration")

OBJECT ORIENTED PROGRAMMING

Ql

>>> gnape = TeachingAssistant("Snape')

>>> harry = Student("Harry", snape)

>>> harry.attend lecture("potions")

Today we 're learning about potions

Dumbledore is awesome!

>>> hermione = Student("Hermione", snape)

>>> hermione.attend lecture("herbology")

Today we’'re learning about herbology

Dumbledore is awesome!

>>> hermione.visit office hours(TeachingAssistant("Hagrid"))
Thanks, Hagrid

>>> harry.understanding

i

>>> gnape.students["Hermione"].understanding

2

>>> Student.instructor = Instructor("Umbridge")

>>> Student.attend lecture(harry, "transfiguration")

OBJECT ORIENTED PROGRAMMING

Ql

>>> gnape = TeachingAssistant("Snape')

>>> harry = Student("Harry", snape)

>>> harry.attend lecture("potions")

Today we 're learning about potions

Dumbledore is awesome!

>>> hermione = Student("Hermione", snape)

>>> hermione.attend lecture("herbology")

Today we’'re learning about herbology

Dumbledore is awesome!

>>> hermione.visit office hours(TeachingAssistant("Hagrid"))
Thanks, Hagrid

>>> harry.understanding

i

>>> gnape.students["Hermione"].understanding

2

>>> Student.instructor = Instructor("Umbridge")

>>> Student.attend lecture(harry, "transfiguration")
Today we 're learning about transfiguration

Umbridge is awesome!

Since the class attribute changed, the instance

accessed the new instructor instance.

INHERITANCE

class Dog(object):
def init (self, name, owner, color):
self.name = name
self.owner = owner
self.color = color
def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")
def talk(self):

print(self.name +

says woof!")

class Cat(object):
def init (self, name, owner, lives=9):
self.name = name
self.owner = owner
self.lives = lives
def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")
def talk(self):
print (self.name +

says meow!")

INHERITANCE

* Both Dog and Cat classes do pretty much the same thing
with a few specific differences.

» Rather than repeat so much code, we can make use of
inheritance.

A class can inherit the class attributes, instance attributes,
and methods of a another class.

INHERITANCE

The Bar class inherits from the Foo class.

Foo is the base class. e
* inheriting from c1as8 Bar(Edoky
Bar is the sub class.

* does the inheriting

By default Python objects inherits from the object class.

INHERITANCE

e The Bar class inherits from the Foo class.
e Foo is the base class. R
* inheriting from gtacs o

« Bar is the sub class.

* does the inheriting

INHERITANCE

The Bar class inherits from the Foo class.

Foo is the base class. i

* inheriting from ciass DaLlfooly
Bar is the sub class.

* does the inheriting

By default Python objects inherits from the object class.

INHERITANCE

Inheritance make use of a is-a hierarchical relationship.

class Pet(object):
def 1init (self, name, owner):
self.is alive = True
self.name = name
self.owner = owner
def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")
def talk(self):
print (self.name)

class Dog(Pet):
def 1init (self, name, owner, color):
Pet. 1init (self, name, owner)
self.color = color
def talk(self):
print (self.name +

says woof!")

INHERITANCE

A Dog is a Pet, and thus the Dog class can inherit the Pet
class.

class Pet(object):
def 1init (self, name, owner):
self.is alive = True
self.name = name
self.owner = owner
def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")
def talk(self):
print (self.name)

class Dog(Pet):
def 1init (self, name, owner, color):
Pet. 1init (self, name, owner)
self.color = color
def talk(self):
print (self.name +

says woof!")

INHERITANCE

By redefining __init__ and talk, the subclass overrides the
base class’s methods.

class Pet(object):
def 1init (self, name, owner):
self.is alive = True
self.name = name
self.owner = owner
def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")
def talk(self):
print (self.name)

class Dog(Pet):
def 1init (self, name, owner, color):
Pet. 1init (self, name, owner)
self.color = color
def talk(self):
print (self.name +

says woof!")

INHERITANCE

The Dog class’s __init__ uses the base class’s __init__.

class Pet(object):
def 1init (self, name, owner):
self.is alive = True
self.name = name
self.owner = owner
def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")
def talk(self):
print (self.name)

class Dog(Pet):
def 1init (self, name, owner, color):
Pet. 1init (self, name, owner)
self.color = color
def talk(self):
print (self.name +

says woof!")

INHERITANCE

Uses the base class’s methods but adds attributes (self.color)
and/or actions that are unique to the subclass.

class Pet(object):
def 1init (self, name, owner):
self.is alive = True
self.name = name
self.owner = owner
def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")
def talk(self):
print (self.name)

class Dog(Pet):
def 1init (self, name, owner, color):
Pet. 1init (self, name, owner)
self.color = color
def talk(self):
print (self.name +

says woof!")

INHERITANCE

2.1 CAT

class Pet(object):
def init (self, name, owner):
self.is alive = True
self.name = name
self.owner = owner
def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")
def talk(self):
print (self.name)

class Cat(Pet):
def init (self, name, owner, lives=9):

def talk(self):

def lose life(self):

INHERITANCE

2.1 CAT

class Pet(object):
def init (self, name, owner):
self.is alive = True
self.name = name
self.owner = owner
def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")
def talk(self):
print (self.name)

Make use of the base class'’s

class Cat(Pet): SENIE
def init (self, name, owner, lives=9):

Pet. init (self, name, owner) : :
self.lives = lives A Cat is different from a Pet

because it has multiple lives.

def talk(self):

. Add self.lives instance attribute.
def lose life(self):

INHERITANCE

2.1 CAT

class Pet(object):
def init (self, name, owner):
self.is alive = True
self.name = name
self.owner = owner
def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")
def talk(self):
print (self.name)

class Cat(Pet):
def init (self, name, owner, lives=9):
Pet. 1init (self, name, owner)
self.lives = lives

def talk(self):
print (self.name +

says meow!")

def lose life(self):

INHERITANCE

2.1 CAT

class Pet(object):
def init (self, name, owner):
self.is alive = True
self.name = name
self.owner = owner
def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")
def talk(self):
print (self.name)

class Cat(Pet):
def init (self, name, owner, lives=9):
Pet. 1init (self, name, owner)
self.lives = lives

def talk(self): Since the base class has an instance

rint(self.name + " says meow!” 5 . 2
= (o) attribute of self.is_alive,

def lose_life(self): we need to set the Cat's self.is_alive to False.
1f ‘self.lives > 0:

self.lives -= 1

i1f self.lives == 0:
self.is alive = False
else:

print("No more lives.")

INHERITANCE

2.2 NOISY CAT

class NoisyCat(Cat):
~ A Cat that repeats: things twice. =
def init (self, name, owner, lives=9):

def talk(self):

INHERITANCE

2.2 NOISY CAT

class NoisyCat(Cat):
"""A Cat that repeats things twice.
def init (self, name, owner, lives=9):
Is this method necessary? Why or why not?
Cat. 1init (self, name, owner, lives)

def talk(self):
We don’t actually need an __init__.

Since NoisyCat inherits from Cat, any new instance
will call Cat’s __init__.

We are not doing anything new either.

INHERITANCE

2.2 NOISY CAT

class NoisyCat(Cat):
"""A Cat that repeats things twice.
def init (self, name, owner, lives=9):
Is this method necessary? Why or why not?
Cat. 1init (self, name, owner, lives)

def talk(self):
Cat.talk(self)

Cat.talk(self)
Make use of the base class'’s

method by calling it twice.

RECAP

OOP allows use to treat data as objects.

Class serves as a template for instance objects.

Use inheritance to avoid repeating code on if there is a "is-a"
relationship between the two classes.

