CS 61A
DISCUSSION 8

INTERPRETERS AND TAIL CALLS

Raymond Chan
Discussion 134
UC Berkeley Fall 16

e Announcements

* Interpreters

 Tail Calls

ANNOUNCEMENTS

Homework 10 due tonight.

Scheme Project due 11/17 (Start early).

* Check website about extra credit.

Lab 10 due Friday.

Submit Midterm 2 Regrade Requests on Gradescope.

Maps Composition Revision due 11/6.

MIDTERM 2

* Video Walkthrough

 https://www.voutube.com/watch?v=mfuq7fR-

rpY&list=PL.x38hZ]5RLZc8e46]GtPFxsDho-dbrPj0O

https://www.youtube.com/watch?v=mfuq7fR-rpY&list=PLx38hZJ5RLZc8e46JGtPFxsDho-dbrPjO

INTERPRETERS

Programs that understand other programs.

Use an underlying language to implement an interpreter that
can understand the implemented language.

Read-Eval-Print-Loop (REPL).

INTERPRETERS
CALCULATOR

In discussion today, creating interpreter for Calculator

language.
Subset of Scheme
+l = *I /

Can be nested and take varying amounts of arguments.

INTERPRETERS

REPL

* Read
* Lexer turns input into “tokens.”

* Parser organizes “tokens” into data structures of the
underlying language.

 Calculator is like a Scheme List

» To represent a Scheme List, we use Pairs, which is a form
of Linked List.

INTERPRETERS

REPL

* Example: (+ 1 2)

» Can be represented as Pair('+', Pair(1, Pair(2, nil)))

INTERPRETERS

REPL

» Eval
* Mutual recursion between eval and apply.

» Eval: evaluates an expression according to the rules of the
language.

* Deals with expressions.

* Apply: applies the function to the argument values.

« May call eval to evaluate sub-expressions.

e Deals with values

INTERPRETERS

REPL

* Print displays result.

INTERPRETERS
PAIRS

* nil is an instance of the nil class. Use it as an empty list.

e Pair class

 Similar to Link List

 |nstance attributes

« self.first

o self.rest

INTERPRETERS
PAIRS

* Methods
__init__(self, first, second)
__len__(self)
* length of list
__getitem__(self, i)
« Allows indexing into the link list (only for Pair).
* Do not index into a link list on the final!

__map__(self, fn):

* Applies function fn to all elements in the list.

INTERPRETERS
PAIRS Q1.1 - 1

Translate the following Calculator expressions into calls to the Pair constructor

>(+12(-34)

INTERPRETERS
PAIRS Q1.1 - 1

Translate the following Calculator expressions into calls to the Pair constructor

>(+12(-34)

+ > —> 2 \nil
= = > 3 e > 4 nil

INTERPRETERS
PAIRS Q1.1 - 1

Translate the following Calculator expressions into calls to the Pair constructor

>(+12(-34)

Palr(F - Pait{l; "Paul (2, Paar(
Pair('— ., Pair({3; Palr(d, -nil)is
nil))))

INTERPRETERS
PAIRS Q1.1 - 1

Translate the following Calculator expressions into calls to the Pair constructor

S+ 1522 3) 4)

INTERPRETERS
PAIRS Q1.1 - 1

Translate the following Calculator expressions into calls to the Pair constructor

S+ 1522 3) 4)

INTERPRETERS
PAIRS Q1.1 - 1

Translate the following Calculator expressions into calls to the Pair constructor

S+ 1522 3) 4)

Parrld s, Patr(ly Pair{
Padr(c: &% Pair(Z2; Pair(3i, nil)yk)
Pair(4,nil))))

INTERPRETERS
PAIRS Q1.1 - 2

Translate the following Python representations of Calculator expressions

into the proper Scheme syntax.

Pailr(:+" =Pair(l; Pair (2, Paar(3, Paite(d ;. nrl)y)j))

INTERPRETERS
PAIRS Q1.1 - 2

Translate the following Python representations of Calculator expressions

into the proper Scheme syntax.

Pailr(:+" =Pair(l; Pair (2, Paar(3, Paite(d ;. nrl)y)j))

INTERPRETERS
PAIRS Q1.1 - 2

Translate the following Python representations of Calculator expressions

into the proper Scheme syntax.

Pailr(:+" =Pair(l; Pair (2, Paar(3, Paite(d ;. nrl)y)j))

INTERPRETERS
PAIRS Q1.1 - 2

Translate the following Python representations of Calculator expressions

into the proper Scheme syntax.

Pair(:k w=Pair(l; Pair(Pait > ,; PaielZ, Parr(3, mail))).-nidy))

INTERPRETERS
PAIRS Q1.1 - 2

Translate the following Python representations of Calculator expressions

into the proper Scheme syntax.

Pair(:k w=Pair(l; Pair(Pait > ,; PaielZ, Parr(3, mail))).-nidy))

INTERPRETERS
PAIRS Q1.1 - 2

Translate the following Python representations of Calculator expressions

into the proper Scheme syntax.

Pair(:k w=Pair(l; Pair(Pait > ,; PaielZ, Parr(3, mail))).-nidy))

INTERPRETERS
EVALUATION

» Evaluation discovers the form of an expression and executes
a corresponding evaluation rule

* Primitive expressions evaluated directly.
» Call expressions

» Evaluate operator.

» Evaluate operands from left to right.

» Apply operand values to the operator.

TAIL CALLS

Tail-call optimization in scheme allow recursive functions that
take constant space.

A tail call occurs if the function call is the last operation of
the current frame.

With no operations after the function call, we don’t need to
lookup variables anymore in the current frame.

Can use the current frame as the function’s new call frame.

Can be a recursive call or a call to another function.

TAIL CALLS

* Factorial example; Not tail recursive

(define (fact n)
(t(=n0) 1
(* n (fact (- n 1))))

TAIL CALLS

» After (fact (- n 1)) returns, we multiply the return value by n.

e We need to remember n in each frame.

(define (fact n)
(t(=n0) 1
(* n (fact (- n 1))))

TAIL CALLS

 Tail Recursive version.

(define (fact n)
(define (fact-tail n result)
(if (= n 0O) result
(fact-tail (- n 1) (* n result))))
(fact-tail n 1))

TAIL CALLS

 Tail Recursive version.

» Call to fact-tail is the last operation. (- n 1) and (* n result)
evaluated before apply those return values to fact-tail.

(define (fact n)
(define (fact-tail n result)
(if (= n 0O) result
(fact-tail (- n 1) (* n result))))
(fact-tail n 1))

TAIL CALLS

» After each call to fact-tail, there are no more operations.

* We do not need the current frame’s variables anymore.

(define (fact n)
(define (fact-tail n result)
(if (= n 0O) result
(fact-tail (- n 1) (* n result))))
(fact-tail n 1))

TAIL CALLS

* result is the list that we are building in each frame.

* At the end, we can just return result.

(define (fact n)
(define (fact-tail n result)
(if (= n 0O) result
(fact-tail (- n 1) (* n result))))
(fact-tail n 1))

TAIL CALLS

* We keep track of n and result by passing them on as
arguments to the recursive call.

» Use helper functions!

(define (fact n)
(define (fact-tail n result)
(if (= n 0O) result
(fact-tail (- n 1) (* n result))))
(fact-tail n 1))

TAIL CALLS

» Helper function uses all required variables and additional
variables as arguments.

(define (fact n)
(define (fact-tail n result)
(if (= n 0O) result
(fact-tail (- n 1) (* n result))))
(fact-tail n 1))

TAIL CALLS

* We keep track of n and result by passing them on as
arguments to the recursive call.

* The interpreter will update n and result in the current frame.

(define (fact n)
(define (fact-tail n result)
(if (= n 0O) result
(fact-tail (- n 1) (* n result))))
(fact-tail n 1))

TAIL CALLS

* Closest thing to iteration in Scheme.

(define (fact n) def fact(n):
result = 1

while n !=0:
(if (= n 0) result result = n * result

(fact-tail (- n 1) (* n result)))) Be— 0 =
(fact-tail n 1)) return result

(define (fact-tail n result)

TAIL CALLS

IDENTIFYING TAIL CALLS

* A function call is a tail call if it is in a tail context. This
function may or may not be tail-recursive.

A tail-recursive function requires the recursive call to be the
last action, which implies it is in a tail context.

TAIL CONTEXT

IDENTIFYING TAIL CALLS

Last sub-expression in the body of a lambda.

Second or third sub-expression in an if form (values that

return).

Any non-predicate sub-expression in a cond form.

Last sub-expression in an and or an or form.

Last sub-expression in a begin’s body.

TAIL CONTEXT

IDENTIFYING TAIL CALLS

» Last sub-expression in the body of a lambda.

(lambda (<parameters>) (expr_1) (expr_2) ... (tail_expr))

> ((lambda (x) (+ 2 x) (fact-tail (- x 1))) 5)
120

TAIL CONTEXT

IDENTIFYING TAIL CALLS

» Second or third sub-expression in an if form (values that

return).

(if <cond>
<true_tail_expr>
<else_tail_expr>)

(define (func x)
(F (=0 %

(fact-tail 3)

(fact-tail 2)

)

TAIL CONTEXT

IDENTIFYING TAIL CALLS

* Any non-predicate sub-expression in a cond form.

(define (func x y)
(cond (cond
(<pred_expr_1> <tail_expr_1>) ((= (fact-tail 5) x) (fact-tail 3))
(<pred_expr_2> <tail_expr_2>) ((= 20 x) (fact-tail 2))

(else <tail_expr>)) (else (fact-tail 5))

)

TAIL CONTEXT

IDENTIFYING TAIL CALLS

 Last sub-expression in an and or an or form.

(and <expr_1> <expr_2> ... <tail_expr>)
(or <expr_1> <expr_2> ... <tail_expr>)

(define (f x y)
(and x (eq? (fact-tail 5) y) (fact-tail 2)))

(define (g x y)
(or #f (eq? 8 y) (fact-tail 2)))

TAIL CONTEXT

IDENTIFYING TAIL CALLS

» Last sub-expression in a begin’s bodly.

(begin <expr_1> <expr_2> ... <tail_expr>)

(begin (+ 2 3) (- 5 3) (fact-tail 3))

TAIL CONTEXT

IDENTIFYING TAIL CALLS

» All the examples had a tail recursive function in the tail call.

« We can have non-tail recursive functions in a tail context.

 This following expressions are not tail recursive.

i.e. (begin (+ 2 3) (fact 3) (fact 3))

i.e. (begin (+ 2 3) (fact 3) (fact-tail 3))

TAIL CONTEXT

Ql

(define (question-a x) (define (question-b x y)
(it (=0) (i (= x0)
0 y
(+ x (question-a (- x 1))))) (question-b (- x 1) (+ y x))))

(define (question-c x y) (define (question-d n)
(if (> xy) (if (question-d n)
(question-c (- y 1) x) (question-d (- n 1))
(question-c (+ x 10) y))) (question-d (+ n 10))))

TAIL CONTEXT

Ql

(define (question-a x)
(if (= x 0)
0
(+ x (question-a (- x 1)))))

TAIL CONTEXT

Ql

(define (question-a x)
(if (= x 0)
0
(+ x (question-a (- x 1)))))

Not in tail context and therefore
not tail recursive.

Need to add x with the return value
of the recursive call.

Each frame remains active.

TAIL CONTEXT

Ql

(define (question-b x y)
(i (= x0)

y
(question-b (- x 1) (+ y x))))

TAIL CONTEXT

Ql

(define (question-b x y)

Both in tail context and tail recursive. (it (=x0)
Both the if form and the y
third subexpressions are in (question-b (- x 1) (+y x)))

tail contexts.

Last evaluated expression is recursive call.

Thus tail recursive.
Constant frames.

TAIL CONTEXT

Ql

(define (question-c x y)
(if (> xy)
(question-c (-y 1) x)
(question-c (+ x 10) y)))

TAIL CONTEXT

Ql

(define (question-c x y) In tail context and tail recursive.
(if (>xy) The recursive calls in the
(question-c (- y 1) x) 2nd and 3rd sub-expressions

(question-c (+ x 10) y))) are the last expression evaluated
and only of them is evaluated.

TAIL CONTEXT

Ql

(define (question-d n)
(if (question-d n)
(question-d (- n 1))
(question-d (+ n 10))))

TAIL CONTEXT

Ql

The recursive calls are in tail contexts and
are both tail calls.

But conditional expression is a recursive call.

After it returns, still need to evaluate
another recursive call.

Not tail recursive and does not use a constant number of frames.

(define (question-d n)
(if (question-d n)
(question-d (- n 1))
(question-d (+ n 10))))

This procedure actually loops forever

Interpreters
Read-Eval-Print-Loop

» Evaluation: eval operator, operands, apply values to
operator

Tail calls allow us to use constant space in the number of
frames.

Tail calls require the last action to be a function call.

TAIL RECURSION

REVERSE - NOTES

Reverse a scheme list tail recursively.

Start off with the non-tail optimized version.

Suppose we want to reverse a linked list recursively without tail optimization, we
can reverse the rest of the linked list and append the first element to the end.

e.x <12 3 4>. We can reverse <2 3 4> into <4 3 2> and append <1> to the end. If
there is only 1 element, reversing an empty list returns nil and appending a list to
the end of nil results in the list itself. (append nil ‘(1)) -> (1)

(define (reverse Ist)
(if (null> Ist) Ist
(append (reverse (cdr Ist))
(list (car Ist))

)

TAIL RECURSION

REVERSE - NOTES

Reverse a scheme list tail recursively.

To make it tail recursive, we introduce a so-far list that is updated at each
recursive call. (Mimicking iteration)

When we update the so-far list, we want to add the current element to the front of
the list. Because we are moving down the list from start to end, we are adding the
beginning elements to the so-far list first and each element we see after that would
come before it.

Ist<1 2 3> (define (reverse Ist)

so-far () (define (rev Ist so-far)

Ist <2 3> :
so-far (1) (if (null? Ist) so-far

st <3> (rev (cdr Ist) (cons (car Ist) so-far)))
so-far (2 1))

Ist < (rev Ist nil)
so-far (32 1)

TAIL RECURSION

INSERT NOTES

Inserts element n in the correct position of a sorted Scheme list.

Starting off with the non-tail optimized version.

We want to traverse the linked list and build a new one as we move along the elements. When we
finally reach the location, the new list that is built.

(define (insert n Ist)
(cond ((null? Ist) (cons n Ist))
((> (car Ist) n) (append (list n) Ist))
(else (cons (car Ist) (insert n (cdr Ist))))

TAIL RECURSION

INSERT NOTES

Inserts element n in the correct position of a sorted Scheme list.

Starting off with the non-tail optimized version.

Lets say we want to insert 3 into <1 2 4 5>. We need to move to the beginning of <4 5> while
constructing <1 2>. Each recursive call is going to construct the current element and recursively
inserting 3 into the rest of the list. When we reach the point at 4, we add 3 by appending <3> with the
rest of the list (<4 5>). We don’t want to make a recursive call here because you don’t want to add 3
before 5 and any elements afterwards.

(define (insert n Ist)
(cond ((null? Ist) (cons n Ist))
((> (car Ist) n) (append (list n) Ist))
(else (cons (car Ist) (insert n (cdr Ist))))

TAIL RECURSION
INSERT NOTES

Inserts element n in the correct position of a sorted Scheme list.

Starting off with the non-tail optimized version.

Since the recursive calls are used to construct a the list before the position we want to insert, the base

case will be to place n. Thus if n is greater than all elements, it will be inserted at the last place as the
recursive call will traverse the whole linked list and not reach the append case.

(define (insert n Ist)
(cond ((null? Ist) (cons n Ist))
((> (car Ist) n) (append (list n) Ist))
(else (cons (car Ist) (insert n (cdr Ist))))

TAIL RECURSION

INSERT NOTES

Inserts element n in the correct position of a sorted Scheme list.

With the logic down we can tail optimized this with a so-far list similar to reverse.

Method 1 (using reverse)
Note: append is tail optimized.

The issue is that cons will always add the element to the beginning, or in other words, in reverse
order. Thus need to reverse the return of the inner procedure.

rev-insert will recursively build rev-Ist with the elements of Ist in reverse order.

(define (insert n Ist)
(define (rev-insert Ist rev-Ist)
(cond ((null? Ist) (cons n rev-Ist))
((> (car Ist) n) (append (reverse lIst)
(cons n rev-lst)))
(else (rev-insert (cdr Ist)
(cons (car Ist) rev-Ist)))))
(reverse (rev-insert Ist nil)))

TAIL RECURSION

INSERT NOTES

Using the same example we want to insert 3 into <1 2 4 5>. To reach <4 5>, we would
have added 1 and 2 to the starting rev-Ist of nil.

Ist = <4 5>
rev-lst = <2 1>

To insert 3, we would need to reverse the Ist to <5 4> and then append this with 3 to rev-Ist.
Thats what the second case is doing.

(define (insert n Ist)
(define (rev-insert Ist rev-Ist)
(cond ((null? Ist) (cons n rev-Ist))
((> (car Ist) n) (append (reverse lIst)
(cons n rev-lst)))
(else (rev-insert (cdr Ist)
(cons (car Ist) rev-Ist)))))

(reverse (rev-insert Ist nil)))

TAIL RECURSION

INSERT NOTES

Inserts element n in the correct position of a sorted Scheme list.

With the logic down we can tail optimized this with a so-far list similar to reverse.

Method 1

Finally the base case will add n to the beginning of rev-Ist when all elements are less than it.
We add to the beginning because if we don’t reach the second case, we are simply reversing Ist.

(define (insert n Ist)
(define (rev-insert Ist rev-Ist)
(cond ((null? Ist) (cons n rev-Ist))
((> (car Ist) n) (append (reverse lIst)
(cons n rev-lst)))
(else (rev-insert (cdr Ist)
(cons (car Ist) rev-Ist)))))
(reverse (rev-insert Ist nil)))

TAIL RECURSION
INSERT NOTES

Method 2 (without reversing)

Assumes list operator is also tail optimized (which might not be).
Depends on implementation of list with the underlying language of there interpreter.

Notice that in order the above solution to be tail optimized, append would have to be tail
optimized (which it is). Knowing this we can replace the cons with append and add
elements to the back of the list rather than the front.

You just have to be careful that you only call list on n or (car Ist). If you call list on (cdr Ist)
it will be nested.

(define (insert n Ist)
(define (helper Ist so-far)
(cond ((null? Ist) (append so-far (list n)))
((> (car Ist) n) (append so-far (cons n Ist)))
(else (helper (cdr Ist)
(append so-far (list (car Ist)))))

)
(helper Ist nil))

