
CS 61A
DISCUSSION 9

DELAYED EXPRESSIONS

Raymond Chan
Discussion 134

UC Berkeley Fall 16

AGENDA

• Announcements

• Iterables and Iterators

• Generators

• Streams

ANNOUNCEMENTS

• Homework 11 due tonight.

• Scheme Project due 11/17.

• Part 1 due tonight! (either EC or required, TBD)

• Part 2 due 11/15.

• Homework 12 due 11/15.

• Lab 11 due Friday.

• Project party tonight.

ITERABLES AND ITERATORS

• Iterables are container objects that be processed sequentially.

• Lists, tuples, strings, dictionaries, ranges

• Call iter to obtain a new iterator for the iterable to process the
elements.

• Can go through elements more than once.

ITERABLES

ITERABLES AND ITERATORS

• An iterator is an object that tracks the position in a sequence of
values.

• It returns elements one at a time.

• Advance to the next element by calling next.

• Eventually reach a StopIteration exception.

• Can only go through the elements once.

• Can’t go to previous elements.

• Calling iter on an iterator will return itself.

ITERATORS

ITERABLES AND ITERATORS
ITERATORS

>>> iterable = [4, 8, 15, 16, 23, 42]
>>> iterator1 = iter(iterable)
>>> next(iterator1)

>>> next(iterator1)

>>> next(iterator1)

>>> iterator2 = iter(iterable)
>>> next(iterator2)

>>> iterator3 = iter(iterator1)
>>> next(iterator3)

>>> next(iterator1)

[4, 8, 15, 16, 23, 42]

iterator1

ITERABLES AND ITERATORS
ITERATORS

>>> iterable = [4, 8, 15, 16, 23, 42]
>>> iterator1 = iter(iterable)
>>> next(iterator1)
4
>>> next(iterator1)

>>> next(iterator1)

>>> iterator2 = iter(iterable)
>>> next(iterator2)

>>> iterator3 = iter(iterator1)
>>> next(iterator3)

>>> next(iterator1)

[4, 8, 15, 16, 23, 42]

iterator1

ITERABLES AND ITERATORS
ITERATORS

>>> iterable = [4, 8, 15, 16, 23, 42]
>>> iterator1 = iter(iterable)
>>> next(iterator1)
4
>>> next(iterator1)
8
>>> next(iterator1)

>>> iterator2 = iter(iterable)
>>> next(iterator2)

>>> iterator3 = iter(iterator1)
>>> next(iterator3)

>>> next(iterator1)

[4, 8, 15, 16, 23, 42]

iterator1

ITERABLES AND ITERATORS
ITERATORS

>>> iterable = [4, 8, 15, 16, 23, 42]
>>> iterator1 = iter(iterable)
>>> next(iterator1)
4
>>> next(iterator1)
8
>>> next(iterator1)
15
>>> iterator2 = iter(iterable)
>>> next(iterator2)

>>> iterator3 = iter(iterator1)
>>> next(iterator3)

>>> next(iterator1)

[4, 8, 15, 16, 23, 42]

iterator1

ITERABLES AND ITERATORS
ITERATORS

>>> iterable = [4, 8, 15, 16, 23, 42]
>>> iterator1 = iter(iterable)
>>> next(iterator1)
4
>>> next(iterator1)
8
>>> next(iterator1)
15
>>> iterator2 = iter(iterable)
>>> next(iterator2)

>>> iterator3 = iter(iterator1)
>>> next(iterator3)

>>> next(iterator1)

[4, 8, 15, 16, 23, 42]

iterator1
iterator2

ITERABLES AND ITERATORS
ITERATORS

>>> iterable = [4, 8, 15, 16, 23, 42]
>>> iterator1 = iter(iterable)
>>> next(iterator1)
4
>>> next(iterator1)
8
>>> next(iterator1)
15
>>> iterator2 = iter(iterable)
>>> next(iterator2)
4
>>> iterator3 = iter(iterator1)
>>> next(iterator3)

>>> next(iterator1)

[4, 8, 15, 16, 23, 42]

iterator1
iterator2

ITERABLES AND ITERATORS
ITERATORS

>>> iterable = [4, 8, 15, 16, 23, 42]
>>> iterator1 = iter(iterable)
>>> next(iterator1)
4
>>> next(iterator1)
8
>>> next(iterator1)
15
>>> iterator2 = iter(iterable)
>>> next(iterator2)
4
>>> iterator3 = iter(iterator1)
>>> next(iterator3)

>>> next(iterator1)

[4, 8, 15, 16, 23, 42]

iterator1
iterator2

ITERABLES AND ITERATORS
ITERATORS

>>> iterable = [4, 8, 15, 16, 23, 42]
>>> iterator1 = iter(iterable)
>>> next(iterator1)
4
>>> next(iterator1)
8
>>> next(iterator1)
15
>>> iterator2 = iter(iterable)
>>> next(iterator2)
4
>>> iterator3 = iter(iterator1)
>>> next(iterator3)

>>> next(iterator1)

[4, 8, 15, 16, 23, 42]

iterator2
iterator1

iterator3

ITERABLES AND ITERATORS
ITERATORS

>>> iterable = [4, 8, 15, 16, 23, 42]
>>> iterator1 = iter(iterable)
>>> next(iterator1)
4
>>> next(iterator1)
8
>>> next(iterator1)
15
>>> iterator2 = iter(iterable)
>>> next(iterator2)
4
>>> iterator3 = iter(iterator1)
>>> next(iterator3)
16
>>> next(iterator1)

[4, 8, 15, 16, 23, 42]

iterator2
iterator1

iterator3

ITERABLES AND ITERATORS
ITERATORS

>>> iterable = [4, 8, 15, 16, 23, 42]
>>> iterator1 = iter(iterable)
>>> next(iterator1)
4
>>> next(iterator1)
8
>>> next(iterator1)
15
>>> iterator2 = iter(iterable)
>>> next(iterator2)
4
>>> iterator3 = iter(iterator1)
>>> next(iterator3)
16
>>> next(iterator1)
23

[4, 8, 15, 16, 23, 42]

iterator2
iterator1

iterator3

ITERABLES AND ITERATORS
ITERATORS

• A for loop calls iter on the iterable and continuously calls
next on the iterator until a StopIteration Exception is caught.

for n in [1, 2, 3]:
print(n)

iterator = iter([1, 2, 3])
try:

while True:
n = next(iterator)
print(n)

except StopIteration:
pass

ITERABLES AND ITERATORS

iterable iterator

__iter__(self) __iter__(self)

__next__(self)

ITERABLES AND ITERATORS

• A generator function uses a yield statement instead of
return.

• Calling a generator function returns a generator object, a
special kind of iterator.

• The yield tells Python we have a generator function.

GENERATORS

ITERABLES AND ITERATORS

• Each time we call next on the generator object, we
executed until yield.

• At yield, we return the statement and pauses the frame.

• When we call next, we resume the frame and start from the
line directly after yield until we hit another yield statement.

• There can be more than one yield.

GENERATORS

ITERABLES AND ITERATORS
GENERATORS

def gen_naturals():
 current = 0
 while True:
 yield current
 current += 1

>>> gen = gen_naturals()
>>> gen
<generator object gen at ...>
>>> next(gen)

>>> next(gen)

ITERABLES AND ITERATORS
GENERATORS

def gen_naturals():
 current = 0
 while True:
 yield current
 current += 1

>>> gen = gen_naturals()
>>> gen
<generator object gen at ...>
>>> next(gen)
0
>>> next(gen)

ITERABLES AND ITERATORS
GENERATORS

def gen_naturals():
 current = 0
 while True:
 yield current
 current += 1

>>> gen = gen_naturals()
>>> gen
<generator object gen at ...>
>>> next(gen)
0
>>> next(gen)

ITERABLES AND ITERATORS
GENERATORS

def gen_naturals():
 current = 0
 while True:
 yield current
 current += 1

>>> gen = gen_naturals()
>>> gen
<generator object gen at ...>
>>> next(gen)
0
>>> next(gen)

ITERABLES AND ITERATORS
GENERATORS

def gen_naturals():
 current = 0
 while True:
 yield current
 current += 1

>>> gen = gen_naturals()
>>> gen
<generator object gen at ...>
>>> next(gen)
0
>>> next(gen)
1

ITERABLES AND ITERATORS
GENERATORS

def gen_naturals():
 current = 0
 while True:
 yield current
 current += 1

>>> gen = gen_naturals()
>>> gen
<generator object gen at ...>
>>> next(gen)
0
>>> next(gen)
1

def gen_naturals_limit(n):
 current = 0
 while current <= n:
 yield current
 current += 1

>>> gen_limit = gen_naturals_limit(2)
>>> next(gen_limit)
0
>>> next(gen_limit)
1
>>> next(gen_limit)
2
>>> next(gen_limit)
StopIteration Exception

Reaching the end of the frame raises StopIteration

ITERABLES AND ITERATORS
GENERATORS - YIELD FROM

• yield from takes in an iterable and yields each of the values
from that iterable

square = lambda x: x*x
def many_squares(s):

for x in s:
yield square(x)

yield from [square(x) for x in s]
yield from map(square, s)

>>> list(many_squares([1, 2, 3]))
[1, 4, 9, 1, 4, 9, 1, 4, 9]

def f(s):
yield from [square(x) for x in s]

>>> g = f([1, 2])
>>> next(g)
1
>>> next(g)
2
>>> next(g)
StopIteration Exception

list takes in an iterable and calls next until a StopIteration

STREAMS

• Iterators and generators are lazy or delayed and can
potentially represent infinite sequences.

• We only compute the next value when we ask for it.

• Scheme Lists cannot be infinite.

STREAMS

> (define (naturals n)
 (cons n (naturals (+ n 1)))
> Maximum Recursion Depth Reached

• The the second argument to cons is always evaluated.

STREAMS

• Streams are lazy Scheme Lists.

• The rest of the list is not evaluated until you ask for it.

• Once you have asked for it once, it will save (memoize) the
value so that it will not be evaluated again.

• Streams can be infinite or finite (ends with nil).

STREAMS

• cons-stream creates a pair where the second is a stream.

• nil is an empty stream.

• car returns the first element.

• cdr-stream computes and returns the rest of the stream.

• cdr will not calculate the next value.

• Looks at second element of pair but does not evaluate.

STREAMS

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s

1 fn

STREAMS

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])

1 fn

STREAMS

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)

1 fn

STREAMS

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)
(2 . #[promised (not forced)])

1 2 fn

STREAMS

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)
(2 . #[promised (not forced)])
> s

1 2 fn

STREAMS

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)
(2 . #[promised (not forced)])
> s
(1 . #[promised (forced)])

1 2 fn

STREAMS

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)
(2 . #[promised (not forced)])
> s
(1 . #[promised (forced)])
> (cdr-stream (cdr-stream (cdr-stream s)))

1 2 fn

STREAMS

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)
(2 . #[promised (not forced)])
> s
(1 . #[promised (forced)])
> (cdr-stream (cdr-stream (cdr-stream s)))
()

nil1 2

STREAMS

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)
(2 . #[promised (not forced)])
> s
(1 . #[promised (forced)])
> (cdr-stream (cdr-stream (cdr-stream s)))
()
> (cdr s)

1 2 nil

STREAMS

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)
(2 . #[promised (not forced)])
> s
(1 . #[promised (forced)])
> (cdr-stream (cdr-stream (cdr-stream s)))
()
> (cdr s)
#[promised (forced)]

1 2 nil

STREAMS

> (define (has-even? s)
(cond ((null? s) False)

 ((even? (car s)) True)
 (else (has-even? (cdr-streams)))))

> has-even?
> (define ones (cons-stream 1 ones))
ones
> (define twos (cons-stream 2 twos))
twos
> ones

> cdr ones)

> (cdr-stream ones)

Q1

> (cdr-stream (cdr-stream ones))

> (has-even? ones)

> (has-even? twos)

STREAMS

> (define (has-even? s)
(cond ((null? s) False)

 ((even? (car s)) True)
 (else (has-even? (cdr-streams)))))

> has-even?
> (define ones (cons-stream 1 ones))
ones
> (define twos (cons-stream 2 twos))
twos
> ones
(1 . #[promise (not forced)])
> cdr ones)

> (cdr-stream ones)

Q1

> (cdr-stream (cdr-stream ones))

> (has-even? ones)

> (has-even? twos)

STREAMS

> (define (has-even? s)
(cond ((null? s) False)

 ((even? (car s)) True)
 (else (has-even? (cdr-streams)))))

> has-even?
> (define ones (cons-stream 1 ones))
ones
> (define twos (cons-stream 2 twos))
twos
> ones
(1 . #[promise (not forced)])
> cdr ones)
#[promise (not forced)]
> (cdr-stream ones)

Q1

> (cdr-stream (cdr-stream ones))

> (has-even? ones)

> (has-even? twos)

STREAMS

> (define (has-even? s)
(cond ((null? s) False)

 ((even? (car s)) True)
 (else (has-even? (cdr-streams)))))

> has-even?
> (define ones (cons-stream 1 ones))
ones
> (define twos (cons-stream 2 twos))
twos
> ones
(1 . #[promise (not forced)])
> cdr ones)
#[promise (not forced)]
> (cdr-stream ones)
(1 . #[promise (not forced)])

Q1

> (cdr-stream (cdr-stream ones))

> (has-even? ones)

> (has-even? twos)

STREAMS

> (define (has-even? s)
(cond ((null? s) False)

 ((even? (car s)) True)
 (else (has-even? (cdr-streams)))))

> has-even?
> (define ones (cons-stream 1 ones))
ones
> (define twos (cons-stream 2 twos))
twos
> ones
(1 . #[promise (not forced)])
> cdr ones)
#[promise (not forced)]
> (cdr-stream ones)
(1 . #[promise (not forced)])

Q1

> (cdr-stream (cdr-stream ones))
(1 . #[promise (forced)])
> (has-even? ones)

> (has-even? twos)

STREAMS

> (define (has-even? s)
(cond ((null? s) False)

 ((even? (car s)) True)
 (else (has-even? (cdr-streams)))))

> has-even?
> (define ones (cons-stream 1 ones))
ones
> (define twos (cons-stream 2 twos))
twos
> ones
(1 . #[promise (not forced)])
> cdr ones)
#[promise (not forced)]
> (cdr-stream ones)
(1 . #[promise (not forced)])

Q1

> (cdr-stream (cdr-stream ones))
(1 . #[promise (forced)])
> (has-even? ones)
Runs forever
> (has-even? twos)

STREAMS

> (define (has-even? s)
(cond ((null? s) False)

 ((even? (car s)) True)
 (else (has-even? (cdr-streams)))))

> has-even?
> (define ones (cons-stream 1 ones))
ones
> (define twos (cons-stream 2 twos))
twos
> ones
(1 . #[promise (not forced)])
> cdr ones)
#[promise (not forced)]
> (cdr-stream ones)
(1 . #[promise (not forced)])

Q1

> (cdr-stream (cdr-stream ones))
(1 . #[promise (forced)])
> (has-even? ones)
Runs forever
> (has-even? twos)
True

RECAP

• Iterators goes over the elements of a sequence one at a
time.

• Generators return generator objects that outputs at yield
and passes the frame.

• Streams are lists such that the rest of the list is not calculated
until we need it.

STREAMS

Slice a stream from a start index to an end
index. Returns a Scheme List

SLICE - NOTES

(slice nat 4 12) -> (4 5 6 7 8 9 10 11 12)
nat -> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

STREAMS

Slice a stream from a start index to an end
index. Returns a Scheme List

SLICE - NOTES

(slice nat 4 12) -> (4 5 6 7 8 9 10 11 12)
nat -> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

We need to reach the stream where we want to start using its
values. 0, 1, 2, 3 is skipped. The starting point is the element at
the start index. To count that number of elements, we can
decrement start by 1, for each recursive call.

STREAMS

Slice a stream from a start index to an end
index. Returns a Scheme List

SLICE - NOTES

(slice nat 4 12) -> (4 5 6 7 8 9 10 11 12)
nat -> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

We need to reach the stream where we want to start using its
values. 0, 1, 2, 3 is skipped. The starting point is the element at
the start index. To count that number of elements, we can
decrement start by 1, for each recursive call.

indices 4, 3, 2, 1, 0,

STREAMS

Slice a stream from a start index to an end
index. Returns a Scheme List

SLICE - NOTES

(slice nat 4 12) -> (4 5 6 7 8 9 10 11 12)
nat -> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

The end index is going to tell us when to end. After we reach 4, each time we
include an element, we want to decrement the end index. We want to keep only
the number of elements specified from the original start and end. So we want to
end when end = original end - original start. But at a certain recursive call, original
start and end are lost without using a new variable. So when we decremented start
by 1 to reach the starting point, we can also decrement end by 1. Thus at 4, end
will become the number of elements to keep. When it reaches 0, we know we have
used up all the elements. Start index is not going to matter after we reached the
starting point as long as we do not increase it beyond 0.

indices 4, 3, 2, 1, 0,

STREAMS

Slice a stream from a start index to an end
index. Returns a Scheme List

SLICE - NOTES

(slice nat 4 12) -> (4 5 6 7 8 9 10 11)
nat -> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

The end index is going to tell us when to end. After we reach 4, each time we
include an element, we want to decrement the end index. We want to keep only
the number of elements specified from the original start and end. So we want to
end when end = original end - original start. But at a certain recursive call, original
start and end are lost without using a new variable. So when we decremented start
by 1 to reach the starting point, we can also decrement end by 1. Thus at 4, end
will become the number of elements to keep. When it reaches 0, we know we have
used up all the elements. Start index is not going to matter after we reached the
starting point as long as we do not increase it beyond 0.

indices 4,12 3,11 2,10 1,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0

STREAMS

Slice a stream from a start index to an end
index. Returns a Scheme List

SLICE - NOTES

(define (slice stream start end)
(cond ((null? stream) nil)
 ((= end 0) nil)
 ((> start 0)

(slice (cdr-stream (- start 1) (- end 1)))
 (else

(cons (car stream)
(slice (cdr-stream stream)

 start
 (- end 1))))))

STREAMS

Slice a stream from a start index to an end
index. Returns a Scheme List

SLICE - NOTES

(define (slice stream start end)
(cond ((null? stream) nil)
 ((= end 0) nil)
 ((> start 0)

(slice (cdr-stream (- start 1) (- end 1)))
 (else

(cons (car stream)
(slice (cdr-stream stream)

 start
 (- end 1))))))

A stream could be finite, and
thus we want to account for that case

STREAMS

Slice a stream from a start index to an end
index. Returns a Scheme List

SLICE - NOTES

(define (slice stream start end)
(cond ((null? stream) nil)
 ((= end 0) nil)
 ((> start 0)

(slice (cdr-stream (- start 1) (- end 1)))
 (else

(cons (car stream)
(slice (cdr-stream stream)

 start
 (- end 1))))))

A stream could be finite, and
thus we want to account for that case

When end is 0, we know this is the first
element that we want to exclude and thus
end the list. (We keep all elements up to,
but excluding the element indexed at end)

STREAMS

Slice a stream from a start index to an end
index. Returns a Scheme List

SLICE - NOTES

(define (slice stream start end)
(cond ((null? stream) nil)
 ((= end 0) nil)
 ((> start 0)

(slice (cdr-stream (- start 1) (- end 1)))
 (else

(cons (car stream)
(slice (cdr-stream stream)

 start
 (- end 1))))))

A stream could be finite, and
thus we want to account for that case

When end is 0, we know this is the first
element that we want to exclude and thus
end the list. (We keep all elements up to,
but excluding the element indexed at end)

Before start has reached 0 yet, we
don’t want to include any elements.
Thus we only make the recursive call as
slicing from the next element with both
start and end decremented by 1 is the
same as slicing from the current
element with initial start and end.

(slice (2 3 4 …) 2 10)
-> (slice (3 4 …) 1 9)
 -> (slice (4 …) 0 8)

STREAMS

Slice a stream from a start index to an end
index. Returns a Scheme List

SLICE - NOTES

(define (slice stream start end)
(cond ((null? stream) nil)
 ((= end 0) nil)
 ((> start 0)

(slice (cdr-stream (- start 1) (- end 1)))
 (else

(cons (car stream)
(slice (cdr-stream stream)

 start
 (- end 1))))))

A stream could be finite, and
thus we want to account for that case

When end is 0, we know this is the first
element that we want to exclude and thus
end the list. (We keep all elements up to,
but excluding the element indexed at end)

Before start has reached 0 yet, we
don’t want to include any elements.
Thus we only make the recursive call as
slicing from the next element with both
start and end decremented by 1 is the
same as slicing from the current
element with initial start and end.

This is where we want to include the current element using cons to
making our list. The second element of this pair will the be recursive call
to slice from the next element with one less element to keep. Thus end is
decremented by 1

(slice (4 5 6 …) 0 8)
-> (4 (slice (5 6…) 0, 7)
 -> (4 5 (slice (6 …) 0, 6)

(slice (2 3 4 …) 2 10)
-> (slice (3 4 …) 1 9)
 -> (slice (4 …) 0 8)

STREAMS

Combine infinite streams together to form infinite streams of factorial
numbers and the Fibonacci sequence.

ZIP-WITH, FACTORIAL, FIBS - NOTES

First let’s understand zip-with

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys)))))

zip-with takes in 2 streams and combines each corresponding element
with function f.
(zip-with + (naturals 0) (naturals 0)) -> (- 2 4 6 …)

STREAMS

Combine infinite streams together to form infinite streams of factorial
numbers and the Fibonacci sequence.

ZIP-WITH, FACTORIAL, FIBS - NOTES

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys)))))

 1 2 3 4 5 6 7 8 10 11 …

Lets define a factorial stream with zip-with. The recursive structure is
multiplying the current index by the previous factorial value.
factorial(n) = n * factorial(n - 1)
Writing out the sequences of the indices and factorials:

1 1 2 6 24 120 …factorials

(naturals 1)

STREAMS

Combine infinite streams together to form infinite streams of factorial
numbers and the Fibonacci sequence.

ZIP-WITH, FACTORIAL, FIBS - NOTES

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys)))))

 1 2 3 4 5 6 7 8 10 11 …

Lets define a factorial stream with zip-with. The recursive structure is
multiplying the current index by the previous factorial value.
factorial(n) = n * factorial(n - 1)
Writing out the sequences of the indices and factorials:

1 1 2 6 24 120 …
*

factorials

(naturals 1)

* *

STREAMS

Combine infinite streams together to form infinite streams of factorial
numbers and the Fibonacci sequence.

ZIP-WITH, FACTORIAL, FIBS - NOTES

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys)))))

 1 2 3 4 5 6 7 8 10 11 …

Lets define a factorial stream with zip-with. The recursive structure is
multiplying the current index by the previous factorial value.
factorial(n) = n * factorial(n - 1)
Writing out the sequences of the indices and factorials:

1 1 2 6 24 120 …
*

factorials

(naturals 1)

* *

(define factorials (cons-stream 1 (zip-with * (naturals 1) factorials)))

STREAMS

Combine infinite streams together to form infinite streams of factorial
numbers and the Fibonacci sequence.

ZIP-WITH, FACTORIAL, FIBS - NOTES

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys)))))

 1 2 3 4 5 6 7 8 10 11 …

1 1 2 6 24 120 …
*

factorials

(naturals 1)

* *

(define factorials
(cons-stream 1

(zip-with * (naturals 1) factorials)))

We need start our factorials off with to
have the value of 1. The rest of the elements
are zipping together factorials with naturals
starting at 1.

STREAMS
ZIP-WITH, FACTORIAL, FIBS - NOTES

 1 2 3 4 …

1 1 2 6 …
*

factorials

(naturals 1)

* *

(define factorials
(cons-stream 1

(zip-with * (naturals 1) factorials)))

> (define factorials …)

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys)))))

(1 (zip-with * (1 …)))factorials
(1 (zip-with * (1 …) (1 …)))factorials

STREAMS
ZIP-WITH, FACTORIAL, FIBS - NOTES

 1 2 3 4 …

1 1 2 6 …
*

factorials

(naturals 1)

* *

(define factorials
(cons-stream 1

(zip-with * (naturals 1) factorials)))

> (define factorials …)
> (cdr-stream factorials)

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys)))))

(1 (zip-with * (1 …)))factorials
(1 (zip-with * (1 …) (1 …)))factorials

(1 (* 1 1) (zip-with * (2 …)))factorials
(1 1 (zip-with * (2 …) (1 …)))factorials

STREAMS
ZIP-WITH, FACTORIAL, FIBS - NOTES

 1 2 3 4 …

1 1 2 6 …
*

factorials

(naturals 1)

* *

(define factorials
(cons-stream 1

(zip-with * (naturals 1) factorials)))

> (define factorials …)
> (cdr-stream factorials)
> (cdr-stream (cdr-stream

(cdr-stream factorial)))

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys)))))

(1 (zip-with * (1 …)))factorials
(1 (zip-with * (1 …) (1 …)))factorials

(1 (* 1 1) (zip-with * (2 …)))factorials

(1 1 (* 2 1) (zip-with + (3 …)))factorials

(1 1 (zip-with * (2 …) (1 …)))factorials

(1 1 2 (zip-with + (3 …) (2 …)))factorials

STREAMS
ZIP-WITH, FACTORIAL, FIBS - NOTES

 1 2 3 4 …

1 1 2 6 …
*

factorials

(naturals 1)

* *

(define factorials
(cons-stream 1

(zip-with * (naturals 1) factorials)))

> (define factorials …)
> (cdr-stream factorials)
> (cdr-stream (cdr-stream

(cdr-stream factorial)))
> (cdr-stream (cdr-stream

(cdr-stream (cdr-stream factorial))))

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys)))))

(1 (zip-with * (1 …)))factorials
(1 (zip-with * (1 …) (1 …)))factorials

(1 (* 1 1) (zip-with * (2 …)))factorials

(1 1 (* 2 1) (zip-with + (3 …)))factorials

(1 1 (zip-with * (2 …) (1 …)))factorials

(1 1 2 (zip-with + (3 …) (2 …)))factorials

(1 1 2 (* 3 2) (zip-with + (4 …)))factorials

(1 1 2 6 (zip-with + (4 …) (6 …)))factorials

STREAMS

Combine infinite streams together to form infinite streams of factorial
numbers and the Fibonacci sequence.

ZIP-WITH, FACTORIAL, FIBS - NOTES

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys)))))

Lets define a fibs stream with zip-with. The recursive structure is
adding the last 2 fibonacci sequence together.
fib(n) = fib(n-1) + fib(n-2)
Writing out the sequences of 2 fibs

0 1 1 2 3 5 8 …fibs

fibs 0 1 1 2 3 5 8 …

STREAMS

Combine infinite streams together to form infinite streams of factorial
numbers and the Fibonacci sequence.

ZIP-WITH, FACTORIAL, FIBS - NOTES

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys)))))

Lets define a fibs stream with zip-with. The recursive structure is
adding the last 2 fibonacci sequence together.
fib(n) = fib(n-1) + fib(n-2)
Writing out the sequences of 2 fibs

0 1 1 2 3 5 8 …fibs

fibs 0 1 1 2 3 5 8 …
+ + +

STREAMS

Combine infinite streams together to form infinite streams of factorial
numbers and the Fibonacci sequence.

ZIP-WITH, FACTORIAL, FIBS - NOTES

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys)))))

Lets define a fibs stream with zip-with. The recursive structure is
adding the last 2 fibonacci sequence together.
fib(n) = fib(n-1) + fib(n-2)
Writing out the sequences of 2 fibs

0 1 1 2 3 5 8 …fibs

fibs 0 1 1 2 3 5 8 …
+ + +

Since the fibs sequence needs the first 2
elements to compute the first one. We start it
off with 2 elements before recursively using zip-
with.

(define fibs (cons-stream 0 (cons-stream 1 (zip-with fibs (cdr-stream fibs)))))

STREAMS
ZIP-WITH, FACTORIAL, FIBS - NOTES

(define fibs (cons-stream 0 (cons-stream 1
 (zip-with fibs (cdr-stream fibs)))))

> (define fibs …)

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys)))))

0 1 1 2 3 5 8 …fibs

fibs 0 1 1 2 3 5 8 …
+ + +

fibs (0 …)

STREAMS
ZIP-WITH, FACTORIAL, FIBS - NOTES

(define fibs (cons-stream 0 (cons-stream 1
 (zip-with fibs (cdr-stream fibs)))))

> (define fibs …)
> (cdr-stream fibs)

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys))))) (0 1 (zip-with *))fibs

(0 1 (zip-with * (0 …) (1 …)))fibs

0 1 1 2 3 5 8 …fibs

fibs 0 1 1 2 3 5 8 …
+ + +

fibs (0 …)

STREAMS
ZIP-WITH, FACTORIAL, FIBS - NOTES

(define fibs (cons-stream 0 (cons-stream 1
 (zip-with fibs (cdr-stream fibs)))))

> (define fibs …)
> (cdr-stream fibs)
> (cdr-stream (cdr-stream

(cdr-stream fibs)))

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys))))) (0 1 (zip-with *))fibs

(0 1 (zip-with * (0 …) (1 …)))fibs

0 1 1 2 3 5 8 …fibs

fibs 0 1 1 2 3 5 8 …
+ + +

fibs (0 …)

(0 1 (+ 0 1) (zip-with *))fibs
(0 1 1 (zip-with * (1 …) (1 …)))fibs

STREAMS
ZIP-WITH, FACTORIAL, FIBS - NOTES

(define fibs (cons-stream 0 (cons-stream 1
 (zip-with fibs (cdr-stream fibs)))))

> (define fibs …)
> (cdr-stream fibs)
> (cdr-stream (cdr-stream

(cdr-stream fibs)))
> (cdr-stream (cdr-stream

(cdr-stream (cdr-stream fibs))))

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys))))) (0 1 (zip-with *))fibs

(0 1 (zip-with * (0 …) (1 …)))fibs

0 1 1 2 3 5 8 …fibs

fibs 0 1 1 2 3 5 8 …
+ + +

fibs (0 …)

(0 1 (+ 0 1) (zip-with *))fibs
(0 1 1 (zip-with * (1 …) (1 …)))fibs

(0 1 1 (+ 1 1) (zip-with *))fibs
(0 1 1 2 (zip-with * (1 …) (2 …)))fibs

STREAMS
ZIP-WITH, FACTORIAL, FIBS - NOTES

(define fibs (cons-stream 0 (cons-stream 1
 (zip-with fibs (cdr-stream fibs)))))

> (define fibs …)
> (cdr-stream fibs)
> (cdr-stream (cdr-stream

(cdr-stream fibs)))
> (cdr-stream (cdr-stream

(cdr-stream (cdr-stream fibs))))
> (cdr-stream (cdr-stream

(cdr-stream
(cdr-stream (cdr-stream fibs)))))

(define (zip-with f xs ys)
(if (or (null? xs) (null? ys)) nil

 (cons-stream (f (car xs) (car ys)
 (zip-with f (cdr-stream xs) (cdr-stream ys))))) (0 1 (zip-with *))fibs

(0 1 (zip-with * (0 …) (1 …)))fibs

0 1 1 2 3 5 8 …fibs

fibs 0 1 1 2 3 5 8 …
+ + +

fibs (0 …)

(0 1 (+ 0 1) (zip-with *))fibs
(0 1 1 (zip-with * (1 …) (1 …)))fibs

(0 1 1 (+ 1 1) (zip-with *))fibs
(0 1 1 2 (zip-with * (1 …) (2 …)))fibs

(0 1 1 2 (+ 1 2) (zip-with *))fibs

(0 1 1 2 3 (zip-with * (2 …) (3 …)))fibs

