
CS 61A
DISCUSSION 10

SQL

Raymond Chan
Discussion 134

UC Berkeley Fall 16

AGENDA

• Announcements

• SQL

• Joins

• Recursive Queries

• Appendix

• Aggregation

ANNOUNCEMENTS

• Scheme Project due tonight.

• Homework 12 due 11/23 (next Wed).

• Lab 12 due Friday.

• Guerrilla Section Saturday.

SQL

• Declarative programming: tells the interpreter what we want.

• Describe the result, not the behavior.

• Data in SQL are stored in tables with a fixed number of
named columns.

• Each row represent a single data record with a value in each
column.

SQL

• We use select statements to create tables.

• Each select creates a new row.

• A row by itself is considered a table.

> select "Ben" as first, "Bitdiddle" as last;
Ben | Bitdiddle

SQL

• Multiple tables can have the same number of columns.

• We can combine the rows of the tables with union, creating a
larger table.

• Column headings do not have to be repeated.

> select "Ben" as first, "Bitdiddle" as last union
> select "Louis", "Reasoner";
Ben | Bitdiddle
Louis | Reasoner

SQL

• To save newly created tables, we use create table.

• create table [table name] as [select statements]

CREATE TABLE records AS
 SELECT "Ben Bitdiddle" AS name, "Computer" AS division, "Wizard" AS
 title, 60000 AS salary, "Oliver Warbucks" AS supervisor UNION

 SELECT "Alyssa P Hacker", "Computer", "Programmer", 40000,
 “Ben Bitdiddle" UNION

 SELECT …

SQL

• We can now make queries to the table.

• select * means select all from table.

• select * from records;

• Prints out the contents of the table.

SQL

• There must be at least 1 column and a table to select from.

• Everything else is optional.

• [condition] is one conditional expression.

select [column1], [column2], … from [table_name]

where [condition] order by [criteria] limit [number of entries]

SQL

• SQL expressions.

• Comparators: =, >, <, <=, >=, !=, <> (“not equal”)

• Booleans: and, or

• Arithmetic: +, -, *, /

• We use || to concatenate strings.

> select "hello" || "world"
hello world

JOINS

• Data can be combined by joining multiple tables together.

• The result table contains a new row for each combination of
rows in the input tables.

select [column1], [column2], … from [table1], [table2] …

where [condition] order by [criteria]

JOINS

A

B

C

D

…

1

2

3

4

…

Table_1

Table_2
select … from Table_1, Table_2

A 1

A 2

A 3

A …

B 1

B 2

B …

… …

JOINS

A

B

C

D

…

1

2

3

4

…

Table_1

Table_2
select … from Table_1, Table_2

A 1

A 2

A 3

A …

B 1

B 2

B …

… …

m rows

n rows

mn rows

JOINS

> select name, day from records, meetings;
Ben Bitdiddle | Monday
Ben Bitdiddle | Wednesday
Ben Bitdiddle | Monday
...
Alyssa P Hacker | Monday
...

• Notice that there are “duplicates” because we have filtered out
the rest of the data for the rows.

Division Day Time

Accounting Monday 9am

Computer Wednesday 4pm

Adminstration Monday 11am

Administration Thursday 1pm

JOINS

• Notice that there are “duplicates” because we have filtered out
the rest of the data for the rows.

• Adding another column back in…

Division Day Time

Accounting Monday 9am

Computer Wednesday 4pm

Adminstration Monday 11am

Administration Thursday 1pm

> select name, day, division from records, meetings;
Ben Bitdiddle | Monday | Accounting
Ben Bitdiddle | Wednesday | Computer
Ben Bitdiddle | Monday | Administration
...
Alyssa P Hacker | Monday
...

JOINS

• Tables can have the same column names.

• Tables can also be joined with themselves.

• To distinguish between columns, we give aliases to tables in
the from clause.

• To refer to a specific table’s column, we use dot notation.

JOINS

select [some_alias].[column1], [some_alias].[column2], …

from [table1] as [alias1], [table2] as [alias2] …

where [condition] order by [criteria]

JOINS

select [some_alias].[column1], [some_alias].[column2], …

from [table1] as [alias1], [table2] as [alias2] …

where [condition] order by [criteria]

Filling in what tables you want to select from and the filter condition
before thinking about the columns you want.

Goal is to obtain the correct information and then outputting the
relevant information

JOINS

> select b.name, b.title from records as a, records as b
... where a.name = "Louis Reasoner" and
... a.supervisor = b.name;
Alyssa P Hacker | Programm

RECURSIVE QUERIES

• We can create local tables using the with clause.

• They cannot be used outside of the select statement.

• Can be thought of as “helper” tables.

• Use the local tables to compute the final result.

RECURSIVE QUERIES

with [local-tables] select [columns] from [tables]

 where [condition] order by [criteria]

RECURSIVE QUERIES

with [local-tables] select [columns] from [tables]

 where [condition] order by [criteria]

with [local-table-name] as (

select … <row 1>… union

select … <row 2> … union

…

)

select [columns] from [tables] where [condition] order by [criteria]

RECURSIVE QUERIES

WITH schedule(day, dresscode) as (
 SELECT "Monday", "Sports" UNION
 SELECT "Tuesday", "Drag" UNION
 SELECT "Wednesday", "Regular" UNION
 SELECT "Thursday", "Throwback" UNION
 SELECT "Friday", "Casual"
)
SELECT a.name, b.dresscode
 from records as a, schedule as b, meetings as c
 where a.division = c.division and
 b.day = c.day order by a.name;

RECURSIVE QUERIES

WITH schedule(day, dresscode) as (
 SELECT "Monday", "Sports" UNION
 SELECT "Tuesday", "Drag" UNION
 SELECT "Wednesday", "Regular" UNION
 SELECT "Thursday", "Throwback" UNION
 SELECT "Friday", "Casual"
)
SELECT a.name, b.dresscode
 from records as a, schedule as b, meetings as c
 where a.division = c.division and
 b.day = c.day order by a.name;

Alyssa P Hacker | Regular
Ben Bitdiddle | Regular
Cy D Fect | Regular
DeWitt Aull | Sports
...

> select * from schedule;
Error

RECURSIVE QUERIES

• Using the with clause, we can create recursive tables.

• The local table has base case(s) and recursive case(s).

with [local-table-name] as (

select … <base case(s)> … union

select … <recursive case(s)> …

)

select [columns] from [tables] where [condition] order by [criteria]

RECURSIVE QUERIES

• Using the with clause, we can create recursive tables.

• The local table has base case(s) and recursive case(s).

create table naturals as
 with num(n) as (
 select 0 union
 select n + 1 from num where n < 5
)
 select * from num;

RECURSIVE QUERIES

• The initial table initially has a column with 1 row and value of
0.

• In the recursive case we add 1 to a value of the table entries
that has not been used before.

create table naturals as
 with num(n) as (
 select 0 union
 select n + 1 from num where n < 5
)
 select * from num;

RECURSIVE QUERIES

• The condition that stops the recursive occurs in the where
clause of the recursive case.

create table naturals as
 with num(n) as (
 select 0 union
 select n + 1 from num where n < 5
)
 select * from num;

RECAP

• In SQL we tell the interpreter what we want.

• Tables are created with select statements that can filter
information.

• We can join tables and use alias to distinguish column names.

• Recursive queries can be created when using local tables.

• Aggregation looks at multiple entries of the table.
(Appendix; Will be covered in Friday’s lecture)

AGGREGATION

• Aggregation operations are performed over multiple rows.

• min, max, average, sum, count

• They all take in 1 argument: a column name or *

• These functions retrieve more information from initial tables.

APPENDIX - SP’16

AGGREGATION

• Find name and salary of the person that makes the most
money.

APPENDIX - SP’16

> select name, max(salary) from records;
Oliver Warbucks | 150000

AGGREGATION

• We can count the number of rows to determine the number
of employees.

APPENDIX - SP’16

> select count(*) from records;
9

AGGREGATION

• Aggregation can be performed on specific sets of rows.

• group by [column name] groups all the rows that have the
same value in column name.

APPENDIX - SP’16

AGGREGATION

• Find the minimum salary earned in each division of the
company.

APPENDIX - SP’16

> select division, min(salary)
... from records group by division;
Computer | 25000
Administration | 25000
Accounting | 18000

AGGREGATION

• Groups can be filtered by the having clause.

• This is similar to the where clause.

APPENDIX - SP’16

AGGREGATION

• Find all titles that are held by more than one person

> select title from records
... group by title having count(*) > 1;
Programmer

APPENDIX - SP’16

AGGREGATION

• Aliases can also be used with aggregation results

> select title, count(*) as count from records
... group by title having count > 1;
Programmer

APPENDIX - SP’16

