CS 170 Discussion 1 (Fall 2017)

Raymond Chan

Asymptotic Analysis

When looking at function behavior, we want to thing about how it behaves when the input gets significantly large. We use the following notations O ("Big-Oh"), Ω ("Big-Omega"), and Θ ("Big-Theta"). These refer to function sets rather than runtime specifically.

• $O(\cdot)$

This is considered an "upper bound". $f(n) \in O(g(n))$ means that the function f(n) belongs in the set of functions that are upper bounded by g(n) when n gets significantly large.

Mathematically, the can be referred to as $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$ for some constant c and some n_0 . If $f(n) \in O(n^2)$, it also means that $f(n) \in O(n^3)$, $f(n) \in O(2^n)$, and $f(n) \in O(\cdot)$ of any function that upper bounds n^2 .

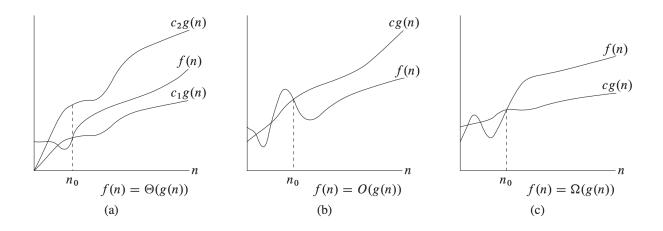
• $\Omega(\cdot)$

This is a "lower bound". $f(n) \in \Omega(g(n))$ means that f(n) is lower bounded by g(n). $f(n) \ge c \cdot g(n)$ for all $n \ge n_0$ for some constant c and some n_0 . Like $O(\cdot)$, if $f(n) \in \Omega(n^2)$, then $f(n) \in \Omega(n)$, $f(n) \in \Omega(\log n)$, and any function that lower bounds n^2 .

• $\Theta(\cdot)$

This is a "tight bound". $f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in \Omega(g(n))$ and $f(n) \in O(g(n))$. This mathematical expression is $c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$ for all $n \geq n_0$ for some n_0 where c_1 and c_2 are constants and $c_1 \leq c_2$.

It is important to note that the bounds are for when the input size grows significantly large. For example $f = 1000n^2$ and $g = n^3$, at smaller values of n, f(n) dominates g(n). But past a certain n_0 , g(n) will always upper bound f(n). Below are some more examples.



(from Introduction to Algorithms by Cormen, Leiserson, Rivest, Stein)

Here are some rules when dealing with asymptotic analysis

- Remove multiplicative constants and lower order terms. e.g. $O(2n^4 + n^2 + n \log n) = O(n^4)$.
- Any exponential dominates any polynomial. e.g. $n^2 \in O(2^n)$.

- Any polynomial dominates any logarithm. e.g. $n^2 \in \Omega(\log_3 n)$.
- Removing exponents. e.g. $x^b = 2^{\log_2(x^b)} = 2^{b \log x}$
- Using limits and ratios.
 We can compare the ratio of f(n) over g(n).

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} 0, & f(n) \in O(g(n)) \\ c, & 0 < c < \infty & f(n) \in \Theta(g(n)) \\ \infty, & f(n) \in \Omega(g(n)) \end{cases}$$

e.g.

$$f(n) = n$$

$$g(n) = \log n$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{n}{\log n}$$

$$\to \frac{1}{n^{-1}} = n \to \infty$$

$$\therefore f(n) \in \Omega(g(n))$$