
CS 170 Discussion 1 (Fall 2017)

Raymond Chan

Asymptotic Analysis

When looking at function behavior, we want to thing about how it behaves when the input gets significantly large.
We use the following notations O (”Big-Oh”), Ω (”Big-Omega”), and Θ (”Big-Theta”). These refer to function sets
rather than runtime specifically.

• O(·)
This is considered an ”upper bound”. f(n) ∈ O(g(n)) means that the function f(n) belongs in the set of functions
that are upper bounded by g(n) when n gets significantly large.
Mathematically, the can be referred to as f(n) ≤ c · g(n) for all n ≥ n0 for some constant c and some n0.
If f(n) ∈ O(n2), it also means that f(n) ∈ O(n3), f(n) ∈ O(2n), and f(n) ∈ O(·) of any function that upper
bounds n2.

• Ω(·)
This is a ”lower bound”. f(n) ∈ Ω(g(n)) means that f(n) is lower bounded by g(n). f(n) ≥ c · g(n) for all
n ≥ n0for some constant c and some n0. Like O(·), if f(n) ∈ Ω(n2), then f(n) ∈ Ω(n), f(n) ∈ Ω(log n), and any
function that lower bounds n2.

• Θ(·)
This is a ”tight bound”. f(n) ∈ Θ(g(n))⇔ f(n) ∈ Ω(g(n)) and f(n) ∈ O(g(n)). This mathematical expression
is c1 · g(n) ≤ f(n) ≤ c2 · g(n)for all n ≥ n0 for some n0 where c1 and c2 are constants and c1 ≤ c2 .

It is important to note that the bounds are for when the input size grows significantly large. For example f = 1000n2

and g = n3, at smaller values of n, f(n) dominates g(n). But past a certain n0, g(n) will always upper bound f(n).
Below are some more examples.

(from Introduction to Algorithms by Cormen, Leiserson, Rivest, Stein)

Here are some rules when dealing with asymptotic analysis

• Remove multiplicative constants and lower order terms.
e.g. O(2n4 + n2 + n log n) = O(n4).

• Any exponential dominates any polynomial.
e.g. n2 ∈ O(2n).

1



• Any polynomial dominates any logarithm.
e.g. n2 ∈ Ω(log3 n).

• Removing exponents.

e.g. xb = 2log2(x
b) = 2b log x

• Using limits and ratios.
We can compare the ratio of f(n) over g(n).

lim
n→∞

f(n)

g(n)
=


0, f(n) ∈ O(g(n))

c, 0 < c <∞ f(n) ∈ Θ(g(n))

∞, f(n) ∈ Ω(g(n))

e.g.

f(n) = n

g(n) = log n

lim
n→∞

f(n)

g(n)
=

n

log n

→ 1

n−1
= n→∞

∴ f(n) ∈ Ω(g(n))

2


