CS 170 Discussion 1 (Fall 2017)

Raymond Chan

Asymptotic Analysis

When looking at function behavior, we want to thing about how it behaves when the input gets significantly large.
We use the following notations O (”Big-Oh”), © (”Big-Omega”), and © (”Big-Theta”). These refer to function sets
rather than runtime specifically.

e O()
This is considered an "upper bound”. f(n) € O(g(n)) means that the function f(n) belongs in the set of functions
that are upper bounded by g(n) when n gets significantly large.
Mathematically, the can be referred to as f(n) < c¢- g(n) for all n > ng for some constant ¢ and some ng.
If f(n) € O(n?), it also means that f(n) € O(n3), f(n) € O(2"), and f(n) € O(-) of any function that upper

bounds n?.

. ()
This is a ”lower bound”. f(n) € Q(g(n)) means that f(n) is lower bounded by g(n). f(n) > c¢- g(n) for all
n > nofor some constant ¢ and some ng. Like O(-), if f(n) € Q(n?), then f(n) € Q(n), f(n) € Q(logn), and any

function that lower bounds n?.

. 0()
This is a ”tight bound”. f(n) € ©(g(n)) < f(n) € Q(g(n)) and f(n) € O(g(n)). This mathematical expression
is ¢1 - g(n) < f(n) < cg - g(n)for all n > ng for some ny where ¢; and ¢z are constants and ¢ < ¢ .

It is important to note that the bounds are for when the input size grows significantly large. For example f = 1000n2
and g = n3, at smaller values of n, f(n) dominates g(n). But past a certain ng, g(n) will always upper bound f(n).
Below are some more examples.

c28(n) cg(n)
fn)
7 S
c18(n) 8(7)
no no no
f@) = ©gm) @) = 0(g(m) @) = M)
(2) (b) ©

(from Introduction to Algorithms by Cormen, Leiserson, Rivest, Stein)

Here are some rules when dealing with asymptotic analysis

e Remove multiplicative constants and lower order terms.
e.g. O(2n* +n? + nlogn) = O(n*).

e Any exponential dominates any polynomial.
e.g. n? € O(2").



e Any polynomial dominates any logarithm.
e.g. n? € Q(logsn).

e Removing exponents.
e.g. zb = 210g2(;rb) — gblogz

e Using limits and ratios.
We can compare the ratio of f(n) over g(n).

nl_mof(z)): : 0<c<oo f(n)e
! , f(n) €
e.g.
fn)=n
g(n) =logn
lim f(n) -
n—oo g(n logn
— % =n — o0
" f(n) € Q(g(n))




