CS 170
DISCUSSION 1

ASYMPTOTIC ANALYSIS

Raymon d Chan



GETTING TO KNOW EVERYONE

On index cards, write
* Name
Where you're from
Something fun you did over summer
Something interesting (hobbies, interesting fact, ...)

Anything else you would like to write down

Raymond Chan, UC Berkeley Fall 2017



ADMINISTRIVIA

Course website: cs170.org

My notes, links, and slides: raychan3.github.io/cs170/fa17.html

* (Not live just yet)

Sections:

* 101: 9 - 10 am Etcheverry 3109

¢ 108: 1 - 2 pm Hearst Field Annex B5

Office Hours: Wed 1 - 2:30 pm Soda 411

Email: raymondchan243@berkeley.edu

Raymond Chan, UC Berkeley Fall 2017



http://cs170.org
http://raychan3.github.io/cs170/fa17.html
mailto:raymondchan243@berkeley.edu

ASYMPTOTIC NOTATION

Look at algorithm complexity when input is large.
Notations: O, Q, O

Let f(n) and g(n) be function from positive integers to positive real
numbers on inputs of size n.

f e O(g) if there is a constant ¢ > 0 such that f(n) < ¢ - g(n)

Raymond Chan, UC Berkeley Fall 2017




ASYMPTOTIC NOTATION

Look at algorithm complexity when input is large.

Notations: O, Q, O

Asymptotic notations are for sets of functions.

Algorithm runtimes expressed as a function of inputs of size n.

If f € O(n), then algorithm’s runtime is in the set of functions f

O(n)

seAlsot - O(p<)-0@2) =

Raymond Chan, UC Berkeley Fall 2017




O (BIG-O)

Notation: O

Let f(n) and g(n) be function from positive integers to positive real
numbers on inputs of size n.

f e O(g) if there is a constant ¢ > 0 such that f(n) < ¢ - g(n)

f(n) belongs to set of functions that are “upper-bounded” by g(n)
when n gets significantly large

e fe O(n?) and g € O(n?), g dominates, but f could be slower.

e f=1000n%and g = n°

Raymond Chan, UC Berkeley Fall 2017




O (BIG-O)

 f(n) belongs to set of functions that are “upper-bounded” by g(n)

when n gets significantly large

e fe O(n?) and g € O(n?), g dominates, but f could be slower.

ex. f = 1000n? and g = n?

c28(n)

f(n)

c18(n)

n ' n
" ) = O(gm) "0 fm) = 0(g(m))

(a) (b)

no

f(n) = Q(g(n))
©

Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein

n

Raymond Chan, UC Berkeley Fall 2017




Q (BIG-OMEGA

Notation: €

Let f(n) and g(n) be function from positive integers to positive real
numbers on inputs of size n.

f e Q(g) if there is a constant ¢ > 0 such that f(n) = ¢ - g(n)

f(n) belongs to set of functions that are “lower-bounded” by g(n)
when n gets significantly large

g € O(f)

If fe Q(n3), then fe Q(n?), fe Q(1) ...

Raymond Chan, UC Berkeley Fall 2017




O (BIG-THETA)

Notation: ©

Let f(n) and g(n) be function from positive integers to positive real
numbers on inputs of size n.

f e O(g) if there is a constant ¢; > 0 and ¢, > 0 such that
° ¢1-g(n) <f(n) < c2 -g(n) for all c1 = ¢

f(n) belongs to set of functions that are “tight-bounded” by g(n)
when n gets significantly large

fe Q(g)and f € O(g)

Raymond Chan, UC Berkeley Fall 2017




COMMON ASYMPTOTIC SETS

O(1): constant
O(log n): logarithmic
O(4/n): square root
O(n): linear
O(nlogn): n logn
O(n?): quadratic
O(n?): cubic

O(2™): exponential
O(n!): factorial

Raymond Chan, UC Berkeley Fall 2017


http://allentang.me

TIPS AND TRICKS

* Remove multiplicative constants and lower order terms
e O(2n* + n? + n log(n)) € O(n%)

* Any exponential dominates any polynomial
2 Hec ©2°)

* Any polynomial dominates any logarithm

e n?e Q(logsn)

Raymond Chan, UC Berkeley Fall 2017



TIPS AND TRICKS

* Removing exponents

< Xb B 2|og (XOb 2b log (x)

- . 0 f=0()
e Limits and ratio lim j: =<c0<c<oo f=0()

S P f = Q)
¢« finl=n g r TR

thanks to allentang.me

* g(n) =logn

> f(n) € Q(g(n)) iml = " L L

o g logn n-1

== e —
thanks to allentang.me

Raymond Chan, UC Berkeley Fall 2017



http://allentang.me
http://allentang.me

PROOFS

* 4 Part Algorithm Prootfs by David Wagner

Main Idea
Pseudocode
Proof of Correctness

Runtime Analysis

e Stanford CS 161 Proof of Correctness

Raymond Chan, UC Berkeley Fall 2017


http://inst.eecs.berkeley.edu/~cs170/fa14/hws/instruct.pdf
http://web.stanford.edu/class/archive/cs/cs161/cs161.1168/HowToWriteCorrectnessProof.pdf

