CS 170 DISCUSSION 1

ASYMPTOTIC ANALYSIS

Raymond Chan UC Berkeley Fall 17

GETTING TO KNOW EVERYONE

- On index cards, write
 - Name
 - Where you're from
 - Something fun you did over summer
 - Something interesting (hobbies, interesting fact, ...)
 - Anything else you would like to write down

ADMINISTRIVIA

- Course website: <u>cs170.org</u>
- My notes, links, and slides: raychan3.github.io/cs170/fa17.html
 - (Not live just yet)
- Sections:
 - 101: 9 10 am Etcheverry 3109
 - 108: 1 2 pm Hearst Field Annex B5
- Office Hours: Wed 1 2:30 pm Soda 411
- Email: <u>raymondchan243@berkeley.edu</u>

ASYMPTOTIC NOTATION

- Look at algorithm complexity when input is large.
- Notations: $\mathbf{O}, \Omega, \mathbf{\Theta}$
- Let f(n) and g(n) be function from positive integers to positive real numbers on inputs of size n.
- $f \in O(g)$ if there is a constant c > 0 such that $f(n) \le c \cdot g(n)$

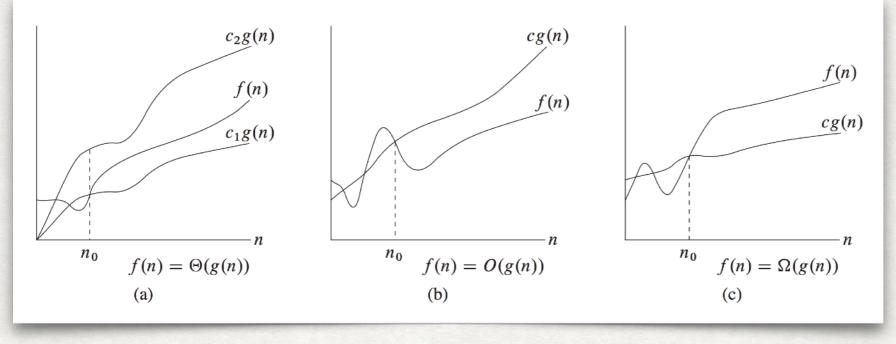
ASYMPTOTIC NOTATION

- Look at algorithm complexity when input is large.
- Notations: $\mathbf{O}, \Omega, \mathbf{\Theta}$
- Asymptotic notations are for sets of functions.
- Algorithm runtimes expressed as a function of inputs of size *n*.
- If f ∈ O(n), then algorithm's runtime is in the set of functions f ∈
 O(n)
 - Also $f \in O(n^2)$, $O(2^n)$...

- Notation: O
- Let f(n) and g(n) be function from positive integers to positive real numbers on inputs of size n.
- $f \in O(g)$ if there is a constant c > 0 such that $f(n) \le c \cdot g(n)$
- f(n) belongs to set of functions that are "upper-bounded" by g(n) when <u>n gets significantly large</u>
 - $f \in O(n^2)$ and $g \in O(n^3)$, g dominates, but f could be slower.
 - $f = 1000n^2$ and $g = n^3$

O (BIG-O)

- f(n) belongs to set of functions that are "upper-bounded" by g(n) when <u>n gets significantly large</u>
 - $f \in O(n^2)$ and $g \in O(n^3)$, g dominates, but f could be slower.
 - ex. $f = 1000n^2$ and $g = n^3$



Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein

- Notation: Ω
- Let f(n) and g(n) be function from positive integers to positive real numbers on inputs of size n.
- $f \in \Omega(g)$ if there is a constant c > 0 such that $f(n) \ge c \cdot g(n)$
- f(n) belongs to set of functions that are "lower-bounded" by g(n) when <u>n gets significantly large</u>
- $g \in O(f)$
- If $f \in \Omega(n^3)$, then $f \in \Omega(n^2)$, $f \in \Omega(1)$...

Θ (BIG-THETA)

- Notation: Θ
- Let f(n) and g(n) be function from positive integers to positive real numbers on inputs of size n.
- $f \in \Theta(g)$ if there is a constant $c_1 > 0$ and $c_2 > 0$ such that
 - $c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$ for all $c_1 \leq c_2$
- f(n) belongs to set of functions that are "tight-bounded" by g(n) when <u>n gets significantly large</u>
- $f \in \Omega(g)$ and $f \in O(g)$

COMMON ASYMPTOTIC SETS

- *O*(1): constant
- $O(\log n)$: logarithmic
- $O(\sqrt{n})$: square root
- *O*(*n*): linear
- $O(n \log n)$: n logn
- $O(n^2)$: quadratic
- *O*(*n*³): cubic
- $O(2^n)$: exponential
- *O*(*n*!): factorial

thanks to <u>allentang.me</u>

TIPS AND TRICKS

- Remove multiplicative constants and lower order terms
 - $O(2n^4 + n^2 + n \log(n)) \in O(n^4)$
- Any exponential dominates any polynomial
 - $n^2 \in O(2^n)$
- Any polynomial dominates any logarithm
 - $n^2 \in \Omega(\log_3 n)$

TIPS AND TRICKS

- Removing exponents
 - $x^{b} = 2^{\log (x^{b})} = 2^{b \log (x)}$
- Limits and ratio
 - f(n) = n

$\lim_{n \to \infty} \frac{f}{g} = \begin{cases} \\ \\ \\ \end{cases}$	0	f = O(g)
	$c, 0 < c < \infty$	$f=\Theta(g)$
	∞	$f=\Omega(g)$

thanks to <u>allentang.me</u>

- $g(n) = \log n$
- $f(n) \in \Omega(g(n))$

$$\lim_{n \to \infty} \frac{f}{g} = \frac{n}{\log n} \to \frac{1}{n^{-1}} = n \to \infty$$

thanks to allentang.me

PROOFS

- <u>4 Part Algorithm Proofs by David Wagner</u>
 - Main Idea
 - Pseudocode
 - Proof of Correctness
 - Runtime Analysis
- Stanford CS 161 Proof of Correctness