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Fast Fourier Transform

Polynomial Multiplication

Given two polynomials A(x) = a0 + a1x+ a2x
2 + . . . adx

d and B(x) = b0 + b1x+ b2x
2 + . . . bdx

d,
we want C(x) = A(x) ·B(x) = c0 + c1x+ c2 + x2 + · · ·+ c2dx

2d where

ck = a0bk + a1bk−1 . . . akb0 =
∑
i=0

kaibk−i

This is really slow because we have to evaluate every pairwise coefficients between A(x) and B(x) to compute C(x),
which is O(d2).

Since any polynomial with degree d can be determined by d + 1 points, we can use these values to represent our
polynomials. Now C(xi) = A(xi) · B(xi). The step would take only O(d). Below we have another method for
polynomial multiplication.

• Selection
Pick points x0, x1, . . . , xn−1, n ≥ 2d+ 1.

• Evaluation
Compute A(x0), A(x1), . . . , A(xn−1), B(x0), B(x1), . . . , B(xn−1).

• Multiplication
Compute C(xk) = A(xk) ·B(xk), k = 0, 1, . . . , n− 1.

• Interpolation
Recover C(x) = c0 + c1x+ c2x

2 + . . . c2dx
2d from C(xk), k = 0, 1, . . . , n− 1.

Selection and Multiplication takes O(n) time. We need to do evaluation and interpolation in sub-O(n2) time.
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Evaluation Divide and Conquer

Suppose we pick plus-minus pairs of x such that we have ±x0,±x1, . . . ,±xn/2−1, squaring the plus-minus pairs gives
us the same value. x20, x

2
1, . . . , x

2
n/2−1.

Looking at an example,

A(x) = 3 + 4x+ 6x2 + 2x3 + x4 + 10x5 = (3 + 6x2 + x4) + x(4 + 2x2 + 10x4)

In the RHS, we have Ae(x) = 3 + 6x+ x2 and LHS Ao(x) = 4 + 2x+ 10x2. Ae(·) contains the even degree coefficients
and Ao(·) contains the odd degree coefficients. In general terms,

A(x) = Ae(x
2) + xAo(x

2)

In our example,

Ae(x) = 3 + 6x+ x2

Ao(x) = 4 + 2x+ 10x2

If we use positive-negative pairs xi,

A(xi) = Ae(x
2) + xAo(x

2)

A(−xi) = Ae(x
2)− xAo(x2)

After the first level, we have to make x0 and x1, x2 and x3, . . . positive negative pairs as well. If we can do this until
n = 1, at each level we make two recursive calls to evaluate a problem that is half the size. Thus we have a recurrence
relation T (n) = 2T (n/2) +O(n) and runtime O(n log n).

Back to finding values of x that we can keep finding pairs such that there will be positive-negative pairs after squaring
them. This can be achieved using complex numbers.

Squaring +1 and −1 gives us +1. Simiarily, squaring +i and −i gives us −1. Now at this level, squaring +1 and
−1 gives us +1.
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Suppose we multiply complex numbers in polar coordinate form (r1, θ1) · (r2, θ2).

(r1, θ1) · (r2, θ2) = r1e
iθ1 · r2eiθ2

= r1r2e
i(θ1+θ2)

= (r1r2, θ1 + θ2)

If we were to move along the unit cicrlce by 900,

(r, θ) · (1, π) = (r, θ + π)

= rei(θ+π)

The nth roots of unity are all solutions to zn = 1.

(1, 0) = 1

(1,
2π

n
)n = (1,

2π

n
· n) = (1, 2π) = 1

(1,
4π

n
)n = (1, 4π) = 1

(1,
2kπ

n
)n = (1, 2kπ) = 1

Also, notice that,

(1, 0) = 1

(1,
2π

n
)n = (1, 2π) = 1

(1,
3π

n
)n = (1, 3π) = −1

(1,
4π

n
)n = (1, 4π) = 1

(1,
5π

n
)n = (1, 5π) = −1

For any point on a unit circle, adding π degrees will negate the value.

In the unit circle, the numbers are plus-minus paired. − cos θ − i sin θ = cos (θ + π) + i sin (θ + π).
The squares will be the (n/2)nd roots of unity, which is the immediate left with a box around the point.

Now let us see why adding π will negate the number. Picking a point on the x axis, we can see that negating
the points is the same as adding π on the sine and cosine curves.
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2π − 3
2π
−π −π2

π
2

π 3
2π

2π

−1

1

f(x) = sinx

f(x) = cosx

x

f(x)

The nth roots of unity are complex numbers 1, ω, ω2, . . . , ωn−1, where ω = e2πi/n. When n is even, these roots
are plus-minus pairs, ωn/2+j = −ωj . Squaring them produces the (n/2)nd roots of unity.
These n roots are solutions to the equation zn = 1. Solutions are z = reie for some multiple of 2π/n.

Below we have fast Fourier transform. A has polynomial of degree ≤ n− 1.

procedure FFT(A,ω)
if ω = 1 then return A(1)

Split A(ω) into Ae(ω
2) +Ao(ω

2)
FFT(Ae, ω

2)
FFT(Ao, ω

2)
for j = 0, . . . n− 1 do

A(ωj) = Ae(ω
2j) + ωjAo(ω

2j)
return A(ω0), . . . A(ωn−1)

The calls to Ae(·) and Ao(·) are evaluating polynomials with degrees at least half of the degree of A(ω) because we
are passing in squared ω values as the input. We have a recurrence relation of T (n) = 2T (n/2) +O(n) = O(n log n).

When performing FFT evaluation, we need to pick n values such that n ≥ d + 1 and is a power of two. This
will ensure the squaring of values gives us the proper divide and conquer all the way to the base case. Now in the
polynomial multiplication problem, if we have A(x) and B(x) with degress da and db respectively, C(x) will have
degree da + db. This means we need to pick n ≥ da + db + 1 in order to uniquely define C(x) in value representation.
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Evaluation FFT Example

Let’s use our example from earlier.

A(x) = 3 + 4x+ 6x2 + 2x3 + x4 + 10x5 = (3 + 6x2 + x4) + x(4 + 2x2 + 10x4)

• Level 1
We see that A(x) has degree 5, so we need the smallest power of two ≥ 6.
Thus we have n = 8 and ω = e2πi/8 = eπi/4 = cos(π/4) + i sin(π/4). Below are the 8 roots of unity in positive
negative pairs.

ω0 = 1

ω4 = eπi = cos(π) + i sin(π) = −1

ω1 = eπi/4 = cos(π/4) + i sin(π/4) =
1 + i√

2

ω5 = e5πi/4 = cos(5π/4) + i sin(5π/4) = −1 + i√
2

ω2 = eπi/2 = cos(π/2) + i sin(π/2) = i

ω6 = e3πi/2 = cos(3π/2) + i sin(3π/2) = −i

ω3 = e3πi/4 = cos(3π/4) + i sin(3π/4) = −1− i√
2

ω7 = e7πi/4 = cos(7π/4) + i sin(7π/4) =
1− i√

2

Next we split A(x) into two recursive polynomials.

A(x) = Ae(x
2) + xAo(x

2)

Ae(x) = B(x) = 3 + 6x+ x2

Ao(x) = C(x) = 4 + 2x+ 10x2

Substituting the roots of unity,

A(ω0) = B(12) + C(12) = B(1) + C(1)

A(ω4) = B((−1)2)− C((−1)2) = B(1)− C(1)

A(ω2) = B(i2) + iC(i2) = B(−1) + iC(−1)

A(ω6) = B((−i)2) + iC((−i)2) = B(−1)− iC(−1)

A(ω1) = B
((1 + i√

2

)2)
+

1 + i√
2
C
((1 + i√

2

2))
= B(i) +

1 + i√
2
C(i)

A(ω5) = B
((
− 1 + i√

2

)2)− 1 + i√
2
C
((
− 1 + i√

2

2))
= B(i)− 1 + i√

2
C(i)

A(ω3) = B
((
− 1− i√

2

)2)− 1− i√
2
C
((
− 1− i√

2

2))
= B(−i)− 1− i√

2
C(−i)

A(ω7) = B
((1− i√

2

)2)
+

1− i√
2
C
((1− i√

2

2))
= B(−i) +

1− i√
2
C(−i)
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After the recursive call

A(ω0) = B(1) + C(1) = 10 + 16 = 26

A(ω4) = B(1)− C(1) = 10− 16 = −6

A(ω2) = B(−1) + iC(−1) = −2 + 12i

A(ω6) = B(−1)− iC(−1) = −2− 12i

A(ω1) = B(i) +
1 + i√

2
C(i) = 2 + 6i+

(1 + i√
2

)
(−6 + 2i) = 2 + 6i− (4 + 2i)

√
2

A(ω5) = B(i)− 1 + i√
2
C(i) = 2 + 6i−

(1 + i√
2

)
(−6 + 2i) = 2 + 6i+ (4 + 2i)

√
2

A(ω3) = B(−i)− 1− i√
2
C(−i) = 2− 6i+

(1− i√
2

)
(−6− 2i) = (2− 6i)− (4− 2i)

√
2

A(ω7) = B(−i) +
1− i√

2
C(−i) = 2− 6i−

(1− i√
2

)
(−6− 2i) = (2− 6i) + (4− 2i)

√
2

Thus we have the points that we need.

• Level 2
Both B(x) and C(x) have degree 2 polynomial. Thus we end up with the 4 roots of unity via the recursive call,
ω = e2πi/4,

ω0 = 1

ω2 = eπi = cos(π) + i sin(π) = −1

ω1 = eπi/2 = cos(π/2) + i sin(π/2) = i

ω3 = e3πi/2 = cos(3π/2) + i sin(3π/2) = −i

Again we split both B(x) and C(x) into two halves,

B(x) = 3 + 6x+ x2 = Be(x
2) + xBo(x

2)

Be(x) = D(x) = 3 + x

Bo(x) = E(x) = 6

C(x) = 4 + 2x+ 10x2 = Ce(x) + xCo(x
2)

Ce(x) = F (x) = 4 + 10x

Co(x) = G(x) = 2

Substituing the 4 roots of unity,

B(ω0) = D(12) + E(12) = D(1) + E(1)

B(ω2) = D((−1)2)− E((−1)2) = D(1)− E(1)

B(ω1) = D(i2) + iE(i2) = D(−1) + iE(−1)

B(ω3) = D((−i)2)− iE((−i)2) = D(−1)− iE(−1)

C(ω0) = F (1) +G(1)

C(ω2) = F (1)−G(1)

C(ω1) = F (−1) + iG(−1)

C(ω3) = F (−1)− iG(−1)
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After the recursive call

B(ω0) = D(1) + E(1) = 4 + 6 = 10

B(ω2) = D(1)− E(1) = 4− 6 = −2

B(ω1) = D(−1) + iE(−1) = 2 + 6i

B(ω3) = D(−1)− iE(−1) = 2− 6i

C(ω0) = F (1) +G(1) = 14 + 2 = 16

C(ω2) = F (1)−G(1) = 14− 2 = 12

C(ω1) = F (−1) + iG(−1) = −6 + 2i

C(ω3) = F (−1)− iG(−1) = −6− 2i

• Level 3
Now we are left with 2 roots of unity for functions D(x), E(x), F (x), G(x). At this point, we can just do
arithmetic. However, I will show how the algorithm continues until the next level, which is the base case.
Again we split the 4 functions into halves,

D(x) = 3 + x = De(x
2) + xDo(x

2)

De(x) = 3

Do(x) = 1

E(x) = 6 = Ee(x
2) + xEo(x

2)

Ee(x) = 6

Eo(x) = 0

F (x) = 4 + 10x = Fe(x
2) + xFo(x

2)

Fe(x) = 4

Fo(x) = 10

G(x) = 2 = Ge(x
2) + xGo(x

2)

Ge(x) = 2

Go(x) = 0

We have 2 roots of unity,

D(ω0) = De(1
2) +Do(1

2) = De(1) +Do(1)

D(ω1) = De((−1)2) +Do((−1)2) = De(1)−Do(1)

E(ω0) = Ee(1) + Eo(1)

E(ω1) = Ee(1)− Eo(1)

F (ω0) = Fe(1) + Fo(1)

F (ω1) = Fe(1)− Fo(1)

G(ω0) = Ge(1) +Go(1)

G(ω1) = Ge(1)−Go(1)

After the recursive calls
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D(ω0) = D(1) = 3 + 1 = 4

D(ω1) = D(−1) = 3− 1 = 2

E(ω0) = E(1) = 3 + 0 = 6

E(ω1) = E(−1) = 3− 0 = 6

F (ω0) = F (1) = 4 + 10 = 14

F (ω1) = F (−1) = 4− 10 = −6

G(ω0) = G(1) = 2 + 0 = 2

G(ω1) = G(−1) = 2− 0 = 2

• Level 4 - Base Case
At ω = 1, we just return our functions with 1 passed in. Now we can propagate upwards.

De(1) = 3, Do(1) = 1

Ee(1) = 6, Eo(1) = 0

Fe(1) = 4, Fo(1) = 10

Ge(1) = 2, Go(1) = 0
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Interpolation

After obtaining values, we need to get it back to coefficients. Let’s take a look at the following matrix.
A(x0)
A(x1)

...
A(xn−1)

 =


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

...
...

...
. . .

...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)



a0
a1
...

an−1


Let’s call the middle matrix Mn(ω). In this special ordering, we have a Vandermonde matrix. If ω0, ω1, . . . , ωn−1 are
distinct, Mn(ω) is invertible. Thus we can obtain the coefficients using

(Mn(ω))−1


A(x0)
A(x1)

...
A(xn−1)

 =


a0
a1
...

an−1


We need to find (Mn(ω))−1 such that Mn(ω)(Mn(ω))−1 = In.

Lets try Mn(ω)Mn(ω−1).

Z =


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

...
...

...
. . .

...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)




1 1 1 . . . 1
1 ω−1 ω−2 . . . ω−(n−1)

...
...

...
. . .

...
1 ω−(n−1) ω−2(n−1) . . . ω−(n−1)(n−1)


For (row, column) (j, k), we have

Z(j,k) =

n−1∑
m=0

ωm(j−1)ω−m(k−1)

=

n−1∑
m=0

ωm(j−k)

=

n∑
m=1

ω(m−1)(j−k)

This becomes a geometric series with r = ωj−k. When j = k, Z = n, which is the term for the entries on the diagonal
of the matrix.
When j 6= k

n∑
m=1

ω(m−1)(j−k) =
1− (ω(j−k))n

1− ω(j−k)

=
1− ωn(j−k)

1− ω(j−k)

ω = e2πi/n

Z(j,k) =
1− e2(j−k)πi

1− e2(j−k)πi/n

e2(j−k)πi = cos(2(j − k)π) + i sin(2(j − k)π)

= 1 + i0

= 1

1− e2(j−k)πi

1− e2(j−k)πi/n
=

0

1− e2(j−k)πi/n
∴ Z(j,k) = 0, j 6= k
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Thus

Mn(ω)Mn(ω−1) = nIn

Mn(ω)
1

n
Mn(ω−1) = In

∴Mn(ω)−1 =
1

n
Mn(ω−1)
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Matrix Form FFT

Mn(ω) =


1 1 1 . . . 1
1 ω ω2 . . . ω(n−1)

...
...

...
. . .

...
1 ω(n−1) ω2(n−1) . . . ω(n−1)(n−1)

 =
[
ωjk
]

First, let’s split the matrix where the even index columns 2k are on the left side and the odd index columns (2k+1)
are on the right side, 0 ≤ k ≤ n/2.

1 1 1 . . . 1
1 ω2 . . . ω1 ω3 . . .
...

...
...

. . .
...

...
1 ω2(n−1) . . . ω(n−1) ω3(n−1) . . .

 =
[
ω−2jk ω−j−2jk

]
=
[
ω−2jk ω−j · ω−2jk

]

Since the column range k has decreased by a half, each element ωjk increases to ω2jk. For each k, the difference
between the even column and the odd column is by a multiplicative factor of ωj . Thus we multiply the even column
elements by ωj to obtain the odd column elements.

Now, lets split the matrix up and bottom. Row index is now 0 ≤ j ≤ n/2. Upper portion row indices are j. Lower
portion row indices are j + n/2.

By decreasing the domain of j by a half, the difference between the lower right half and the upper right half is
j = n/2. Thus the difference is a multiplicative factor of ωn/2, which is −1 as shown below.

ωn = (e2πi/n)n

= e2πi

= cos 2π + i sin 2π

= 1

ωkn = e2kπi

= cos 2kπ + i sin 2kπ

= 1

ωn/2 = (e2πi/n)n/2

= eπi

= cosπ + i sinπ

= −1

ωkn/2 = ekπi

= cos kπ + i sin kπ

= −1

11



Take j = 1 for example, we set the LHS as −1· upper right elements, and set RHS as lower right elements.

−1(ω · ω2k) = ω(1+n/2) · ω2(1+n/2)k

−1(ω · ω2k) = ω1+n/2 · ω(2+n)k

−1(ω · ω2k) = ω · ωn/2 · ω2k · ωkn

−1(ω · ω2k) = −1 · ω · ω2k

Thus to obtain the lower right half elements, we multiply the upper right half elements by ωn/2 = −1.
Similarly, we can see that the multiplicative difference of the upper left elements and the lower left elements is only 1.
Using the j = 1 example.

ω2juk = ω2k

ω2jlk = ω2(1+n/2)k

= ω(n+2)k

= ωkn · ω2k

= 1 · ω2k

= ω2juk

With the multiplicative factor between the upper left and lower left being 1, we can leave as is.
1 1 1 . . . 1
1 ω2 . . . ω ω3 . . .
...

...
...

. . .
...

...
1 ω2(n−1) . . . ω(n−1) ω3(n−1) . . .

 =

[
ω2jk ωj · ω2jk

ω2jk −ωj · ω2jk

]

With all four corners sharing elements ω2jk, such that 0 ≤ j ≤ n/2 and 0 ≤ k ≤ n/2, we have a n/2 x n/2 matrix.
1 1 1 . . . 1
1 ω2 ω4 . . . ω(n−2)

...
...

...
. . .

...
1 ωn ω2n . . . ω(n−2)(n−2)

 = Mn/2(ω)

∴Mn(ω) =

[
Mn/2(ω) ωjMn/2(ω)
Mn/2(ω) −ωjMn/2(ω)

]
1

1Diagrams from Course Textbook, Algorithms by Dasgupta, Papadimitriou, and Vazirani

12


