CS 170 DISCUSSION 3

FAST FOURIER TRANSFORM AND GRAPHS

> Raymond Chan UC Berkeley Fall 17

COUPLE THINGS

- Slides and notes will be posted here
 - <u>http://raychan3.github.io/cs170/fa17.html</u>
- Fill this out (name and section) if plan to attend any of my sections:
 - https://goo.gl/forms/459vf15Q4ad8pFgm2
- Anonymous feedback form:
 - https://goo.gl/forms/mM8JnAvIDAcEb2sI2
- Both will be on website.

• Complex numbers can be represented as a + bi or in polar coordinates with r and θ

z = a + bi $r = \sqrt{a^2 + b^2}$ $\theta = tan^{-1}(b/a)$

• *z* = *a* + *bi*

• = $r(cos(\theta) + isin(\theta)) = re^{\theta i}$

• $\cos(\theta) + i\sin(\theta) = e^{\theta i} \text{ Euler's Formula}$

• *z* = *a* + *bi*

- = $r(cos(\theta) + isin(\theta)) = re^{\theta i}$
- $\cos(\theta) + i\sin(\theta) = e^{\theta i} \text{ Euler's Formula}$

z = a + bi $r = \sqrt{a^2 + b^2}$ $\theta = tan^{-1}(b/a)$

- $(\mathbf{r}_1, \mathbf{\theta}_1) \cdot (\mathbf{r}_2, \mathbf{\theta}_2) = (\mathbf{r}_1 \mathbf{r}_2, \mathbf{\theta}_1 + \mathbf{\theta}_2)$
- Multiplying by $(1, \pi)$ and $(1, x\pi)$ (whiteboard)

- Adding π to θ for cos θ + isin θ till negate the value.
- We want the nth complex roots of unity (whiteboard)
 - All solutions to $z^n = 1$

• Visualizing the roots of unity points on the unit circle.

POLYNOMIAL MULTIPLICATION

- Want to multiply two polynomials
 - $A(x)=a_0+ax^1+a_2x^2+...a_dx^d$ and $B(x)=b_0+bx^1+b_2x^2+...b_dx^d$
- $C(x) = A(x) \cdot B(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{2d} x^{2d}$
- where $c_k = a_0 b_k + a_1 b_{k-1} \dots a_k b_0 = \sum_{i=0} k a_i b_{k-i}$
- Slow due to pairwise multiplication $\longrightarrow O(d^2)$.
- Since any polynomial of degree d can be determined by d + 1 points, we can do better.

POLYNOMIAL MULTIPLICATION 2

- Selection (O(n))
 - Pick points $x_0, x_1, \ldots, x_{n-1}$ such that $n \ge 2d + 1$
- Evaluation (O(?))
 - Compute $A(x_0)$, $A(x_1)$, ..., $A(x_{n-1})$ and $B(x_0)$, $B(x_1)$, ..., $B(x_{n-1})$
- Multiplication (O(n))
 - Compute $C(x_k) = A(x_k) \cdot B(x_k), k = 0, 1, ..., n 1$
- Interpolation (O(?))
 - Recover $C(x)=c_0+c_1x+c_2x^2+...c_{2d}x^{2d}$ from $C(x_k)$, k=0, 1, ..., n-1

- Interpolation is inverse of evaluation.
- Evaluation needs to be sub $O(n^2)$ time.
- What points should we pick for x_i?
- Recursively use the *n*th root of unity.

- Let $\omega = (1, 2\pi/n) = e^{i2\pi/n}$
- Let $\omega^k = (1, 2\pi/n) = e^{i(2k\pi/n)}$
- The *n*th roots of unity are ω^0 , ω^1 , ω^2 , ..., ω^{n-1}
- $\boldsymbol{\omega}^{i} = -\boldsymbol{\omega}^{i+n/2}$
- When we square both values, we have $(\mathbf{\omega}^i)^2 = (\mathbf{\omega}^{i+n/2})^2 = \mathbf{\omega}^{2i}$
- ω^{2i} is by n/2 -th roots of unity.
- Divide and conquer step is to square our values.

- $A(x) = A_e(x^2) + x A_o(x^2)$
- Even degree polynomial: $A_e(x) = a_0 + a_2x + a_4x^2 + \dots$
- Odd degree polynomial: $A_o(x) = a_1 + a_3x + a_5x^2 + \dots$
- Recursively compute A_e and A_o on n/2 -th roots of unity and combine
- $A(\boldsymbol{\omega}^{i}) = A_{e}(\boldsymbol{\omega}^{2i}) + \boldsymbol{\omega}^{i} A_{o}(\boldsymbol{\omega}^{2i})$
- $A(\omega^{i + n/2}) = A_e(\omega^{2i}) \omega^i A_o(\omega^{2i})$
- Pick n as the next power of $2 \ge degree + 1$

- Reusing $A_e(\boldsymbol{\omega}^{2i})$ and $A_o(\boldsymbol{\omega}^{2i})$
- Runtime: $T(n) = 2T(n/2) + O(n) = O(n \log n)$

DEPTH FIRST SEARCH

DFS(G, v)

label v as visited and set previsit number

for all of v's neighbors u:

if vertex u has not been visited:

DFS(G, u)

set postvisit number

DEPTH FIRST SEARCH

DFS(G, v)

Use S as stack with v as first value

while S is not empty

pop first value of S as v

if v not visited:

label v as visited

for all of v's neighbors u:

push u onto stack

GRAPH EDGES

- Types of edges
 - Tree edges are edges that Depth First Search uses.
 - Forward edges connect nodes to a non child descendant.
 - Back edges lead to an ancestor in the DFS tree.
 - Cross edges lead to neither descendant nor ancestor. Leads to already explored nodes (with postvisit number).