
CS 170
DISCUSSION 6

MINIMUM SPANNING TREES

Raymond Chan
UC Berkeley Fall 17

Raymond Chan, UC Berkeley Fall 2017

PRIM’S ALGORITHM

• Grow tree similar to Dijkstra’s algorithm.

• Take lightest edge that connects existing tree to unseen vertex.

• O((|V| + |E|) log |V|) with binary heap

• O(|E| + |V| log |V|) with Fibonacci heap

• Demo

generic_MST(G):
start S = v:
find lightest edge (x, y)
in crossing (S, V - S)

S = S union {y}

prim (G, s):
c[v] = infinity
c[s] = 0
prev[s] = s
PriorityQueue.add(G.V, c)
while PQ not empty:
u = PQ.DeleteMin()
add (u, prev(u)) to T
for edge (u, v):
if w(u, v) < c(v):
c(v) = w(u, v)
prev(v) = u
PQ.DecreaseKey(v, c[v])

http://visualgo.net/mst

Raymond Chan, UC Berkeley Fall 2017

KRUSKAL’S ALGORITHM

• Choose lightest edge that does not form a cycle.

• O(|E| log |E| + |E| log |V|) = O(|E| log |E|) = O(|E| log |V|)

• Demo

• How do we actually achieve the above runtime?

http://visualgo.net/mst

Raymond Chan, UC Berkeley Fall 2017

KRUSKAL’S ALGORITHM

• At any point, we have partial solutions: sets of vertices that are
connected based on the lightest edge at some previous iteration.

• In the next step, we can join these sets together (vertex by itself
is a set).

• Make use of disjoint set such that joining two elements from
different sets joins all elements for the vertices’ respective sets.

Raymond Chan, UC Berkeley Fall 2017

DISJOINT SETS

• Union-Find Implementation

• Tree with directed edges pointing towards root.

• Union-By-Rank (O(log n) time per operation)

• Point smaller rank root to larger rank root.

• Path Compression (O(log n) amortized time)

• On union, point all descendants of smaller rank root (inclusive)
to larger rank root.

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

• Each disjoint set is a directed tree with edges point to root.

• Consider a vertex’s rank to be reverse height of vertex in the tree.
(Root rank is height, direct children: height - 1, leaf: 0)

• Finding a vertex returns the root of tree that vertex is in.

• Union of two vertices join at root. Directed edge from smaller
rank root to larger rank root.

• If ranks are equal, increment new root by 1

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

kruskal (G, v):
for all vertices v: makeset(v)
X = {}
sort edges by weight
for edge (u, v) in sorted edges E:
if find(u) ≠ find(v):
add edge (u, v) to X
union(u, v)

makeset(v):
π(v) = v # parent of v
rank(v) = 0

find(v):
while v ≠ π(v): v = π(v)
return v

union(x, y):
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):
π(ry) = rx

else:
π(rx) = ry
if rank(rx) > rank(ry):
rank(rx) = rank(ry) + 1

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

B0A0

D0

C0

G0E0 F0

makeset(A), makeset(B), …, makeset(G)

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

B0A0

D0

C0

G0E0 F0

union(A, D), union(B, E), union(C, F)

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

A0 C0

union(A, D), union(B, E), union(C, F)

B0

D1 E1 F1 G0

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

A0 C0B0

D1 E1 F1 G0

union(C, G)

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

union(C, G)
- G’s root is G.
- C’s root is F.
- Connect G to F as F has higher rank.

A0 C0B0

D1 E1 F1

G0

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

union(E, A)

A0 C0B0

D1 E1 F1

G0

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

union(E, A)
- E’s root is E.
- A’s root is D.
- D and E has same rank. Increment rank of new root (D).

A0 C0

B0

D2

E1

F1

G0

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

A0 C0

B0

D2

E1

F1

G0

union(B, G)

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

union(B, G)
- B’s root is now D.
- G’s root is F.
- Connect F to D as D has higher rank.

A0

C0B0

D2

E1 F1

G0

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

• Property 1: A node’s rank is smaller than the node’s parent’s rank.

• Rank of node is height of subtree rooted at that node.

• Strictly increasing rank as we travel toward root node.

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

• Property 2: Any root node of rank k has at least 2k nodes in its
tree.

• Can only increase rank when merging two roots with same rank.

• Rank k root required merging two trees with roots of rank k - 1.

• Root of rank k - 1 needed two tree roots of k - 2.

B1

A2

C1

D0 E0 F0 G0

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

• Property 2: Any root node of rank k has at least 2k nodes in its
tree.

• Can only increase rank when merging two roots with same rank.

• Rank k root required merging two trees with roots of rank k - 1.

• Root of rank k - 1 needed two tree roots of k - 2.

B1

A2

C1

D0 E0 F0 G0 H0

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

• Property 2: Any root node of rank k has at least 2k nodes in its
tree.

A0 k = 0, at least 20 = 1 node in tree

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

• Property 2: Any root node of rank k has at least 2k nodes in its
tree.

A0 k = 0, at least 20 = 1 node in tree

A0

D1 k = 1, at least 21 = 2 nodes in tree

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

• Property 2: Any root node of rank k has at least 2k nodes in its
tree.

A0 k = 0, at least 20 = 1 node in tree

A0

D1 k = 1, at least 21 = 2 nodes in tree

C0

F1

G0

Adding lower rank doesn’t change lower bound.

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

• Property 2: Any root node of rank k has at least 2k nodes in its
tree.

A0 k = 0, at least 20 = 1 node in tree

A0

D1 k = 1, at least 21 = 2 nodes in tree

C0

F1

G0

Adding lower rank doesn’t change lower bound.

k = 2, at least 22 = 4 nodes in tree.
Can’t have 3 nodes as it would
contradict the fact that E has
rank 1

A0

B0

D2

E1

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

• Property 3: If there are n elements overall in a set, there can be at
most n / 2k nodes of rank k.

• Root has at least 2k descendants (including self).

• Internal nodes also have at least 2k descendants as they were
roots in the past, where k is rank of internal node.

• Different rank-k nodes cannot have common descendants.

• Merging at root.

• Any element has at most one ancestor of rank k.

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

• Property 3: If there are n elements overall, there can be at most
n / 2k nodes of rank k.

• We have some sort to tree structure that’s balanced.

• Maximum rank is log n.

• Tree have maximum possible height of log n.

• Running time of find and union upper bounded by log n.

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

• Property 3: If there are n elements overall, there can be at most
n / 2k nodes of rank k.

• Consider n = 4.

A0

B0

D2

E1

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

• Property 3: If there are n elements overall, there can be at most
n / 2k nodes of rank k.

• Consider n = 4.

A0

B0

D2

E1

Can’t have higher rank than 2 without more elements.

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

• Property 3: If there are n elements overall, there can be at most
n / 2k nodes of rank k.

• Consider n = 4.

A0

B0

D2

E1

Can’t have higher rank than 2 without more elements.
At most 4 / 22 = 1 element of rank 2

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

• Property 3: If there are n elements overall, there can be at most
n / 2k nodes of rank k.

• Consider n = 4.

A0

B0

D2

E1

Can’t have higher rank than 2 without more elements.
At most 4 / 22 = 1 element of rank 2
At most 4 / 21 = 2 elements of rank 1

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

• Property 3: If there are n elements overall, there can be at most
n / 2k nodes of rank k.

• Consider n = 4.

A0

B0

D2

E1

Can’t have higher rank than 2 without more elements.
At most 4 / 22 = 1 element of rank 2
At most 4 / 21 = 2 elements of rank 1
At most 4 / 20 = 4 elements of rank 0

A0 B0 D0 E0

Raymond Chan, UC Berkeley Fall 2017

UNION-FIND

kruskal (G, v):
for all vertices v: makeset(v)
X = {}
sort edges by weight
for edge (u, v) in sorted edges E:
if find(u) ≠ find(v):
add edge (u, v) to X
union(u, v)

makeset(v):
π(v) = v # parent of v
rank(v) = 0

find(v):
while v ≠ π(v): v = π(v)
return v

union(x, y):
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):
π(ry) = rx

else:
π(rx) = ry
if rank(rx) > rank(ry):
rank(rx) = rank(ry) + 1

Sorting is O(|E| log(|E|))
|E| iterations.
find and union take O(log(|V|))
Kruskal takes O(|E| log(|E|) + |E| log(|V|))

Raymond Chan, UC Berkeley Fall 2017

PATH COMPRESSION

• Let’s keep trees short,

• On find, have all nodes all path to root point to root.

• Increases cost of find.

• But when considering sequences of find and union operations,
amortized (average) cost becomes bit more than O(1).

find(v):
while v ≠ π(v): π(v) = find(π(v))
return π(v)

Raymond Chan, UC Berkeley Fall 2017

PATH COMPRESSION

B0A0

D0

C0

G0E0 F0

makeset(A), makeset(B), …, makeset(G)

Raymond Chan, UC Berkeley Fall 2017

A0 C0

union(A, D), union(B, E), union(C, F)

B0

D1 E1 F1 G0

PATH COMPRESSION

Raymond Chan, UC Berkeley Fall 2017

union(C, G)
- G’s root is G.
- C’s root is F.
- Connect G to F as F has higher rank.

A0 C0B0

D1 E1 F1

G0

PATH COMPRESSION

Raymond Chan, UC Berkeley Fall 2017

union(B, A)
- B’s root is E.
- A’s root is D.
- D and E has same rank. Increment rank of new root (D).

A0 C0

B0

D2

E1

F1

G0

PATH COMPRESSION

Raymond Chan, UC Berkeley Fall 2017

find(B)

A0 C0

B0

D2

E1

F1

G0

PATH COMPRESSION

Raymond Chan, UC Berkeley Fall 2017

find(B)
- B’s root is D.
- B is in path to root. Connect it to D. Rank of B doesn’t change.

A0 C0

B0

D2

E1

F1

G0

PATH COMPRESSION

Raymond Chan, UC Berkeley Fall 2017

union(B, G)
- B’s root is now D.
- G’s root is F.
- Connect F to D as D has higher rank.
- G on path to F.

A0

C0

D2

E1 F1

PATH COMPRESSION

B0 G0

Raymond Chan, UC Berkeley Fall 2017

find(G)

A0

C0

D2

E1 F1

PATH COMPRESSION

B0 G0

Raymond Chan, UC Berkeley Fall 2017

find(G)
- G’s root is now D.
- G on path to D. Connect G to D. C is not on path.

A0

C0

D2

E1 F1

G0

PATH COMPRESSION

B0

Raymond Chan, UC Berkeley Fall 2017

PATH COMPRESSION

• Don’t worry too much about path compression proof, but…

• Know log*(n).

• The number of successively applying log operations on n to get
it down to 1.

• log*(1000) = 4. log log log log 1000 ≤ 1

find(v):
while v ≠ π(v): π(v) = find(π(v))
return π(v)

Raymond Chan, UC Berkeley Fall 2017

PATH COMPRESSION

• Also understand idea of amortized cost.

• Single operation in worst case may take longer due to some
overhead.

• But applying a sequence of operations allows us to distribute that
overhead to many number of operations.

• Overhead cost applied only from time to time.

• Total cost averages out over each operation in sequence.

Raymond Chan, UC Berkeley Fall 2017

PATH COMPRESSION

• Example: resizing array.

• Only need to resizing when array is full.

• Resize array to be 2x as before.

• Overhead is copying: O(n)

• But until array is full, it’s constant appending and indexing.

• Overhead costs is amortized or averaged over the many
appending and indexing operations.

