CS 170 DISCUSSION 6

MINIMUM SPANNING TREES

Raymond Chan UC Berkeley Fall 17

PRIM'S ALGORITHM

- Grow tree similar to Dijkstra's algorithm.
- Take lightest edge that connects existing tree to unseen vertex.
- O((|V| + |E|) log |V|) with binary heap
- O(IEI + IVI log IVI) with Fibonacci heap
- Demo

```
generic_MST(G):
   start S = v:
    find lightest edge (x, y)
      in crossing (S, V - S)
   S = S union {y}
```

```
prim (G, s):
    c[v] = infinity
    c[s] = 0
    prev[s] = s
    PriorityQueue.add(G.V, c)
    while PQ not empty:
        u = PQ.DeleteMin()
        add (u, prev(u)) to T
        for edge (u, v):
            if w(u, v) < c(v):
                 c(v) = w(u, v)
                 prev(v) = u
                 PQ.DecreaseKey(v, c[v])</pre>
```

KRUSKAL'S ALGORITHM

- Choose lightest edge that does not form a cycle.
- O(|E| log |E| + |E| log |V|) = O(|E| log |E|) = O(|E| log |V|)
- Demo
- How do we actually achieve the above runtime?

KRUSKAL'S ALGORITHM

- At any point, we have partial solutions: sets of vertices that are connected based on the lightest edge at some previous iteration.
- In the next step, we can join these sets together (vertex by itself is a set).
- Make use of disjoint set such that joining two elements from different sets joins all elements for the vertices' respective sets.

DISJOINT SETS

- Union-Find Implementation
 - Tree with directed edges pointing towards root.
- Union-By-Rank (O(log n) time per operation)
 - Point smaller rank root to larger rank root.
- Path Compression (O(log n) amortized time)
 - On union, point all descendants of smaller rank root (inclusive) to larger rank root.

- Each disjoint set is a directed tree with edges point to root.
- Consider a vertex's rank to be reverse height of vertex in the tree.
 (Root rank is height, direct children: height 1, leaf: 0)
- Finding a vertex returns the root of tree that vertex is in.
- Union of two vertices join at root. Directed edge from smaller rank root to larger rank root.
 - If ranks are equal, increment new root by 1

```
kruskal (G, v):
 for all vertices v: makeset(v)
 X = \{\}
 sort edges by weight
 for edge (u, v) in sorted edges E:
   if find(u) \neq find(v):
    add edge (u, v) to X
    union(u, v)
makeset(v):
 \pi(v) = v # parent of v
 rank(v) = 0
find(v):
 while v \neq \pi(v): v = \pi(v)
 return v
```

```
union(x, y):
    r<sub>x</sub> = find(x)
    r<sub>y</sub> = find(y)
    if r<sub>x</sub> = r<sub>y</sub>: return
    if rank(r<sub>x</sub>) > rank(r<sub>y</sub>):
        π(r<sub>y</sub>) = r<sub>x</sub>
    else:
        π(r<sub>x</sub>) = r<sub>y</sub>
        if rank(r<sub>x</sub>) > rank(r<sub>y</sub>):
        rank(r<sub>x</sub>) = rank(r<sub>y</sub>) + 1
```

makeset(A), makeset(B), ..., makeset(G)

union(A, D), union(B, E), union(C, F)

union(A, D), union(B, E), union(C, F)

union(C, G)

union(C, G)

- G's root is G.
- C's root is F.
- Connect G to F as F has higher rank.

union(E, A)

union(E, A)

- E's root is E.
- A's root is D.
- D and E has same rank. Increment rank of new root (D).

union(B, G)

union(B, G)

- B's root is now D.
- G's root is F.
- Connect F to D as D has higher rank.

- Property 1: A node's rank is smaller than the node's parent's rank.
 - Rank of node is height of subtree rooted at that node.
 - Strictly increasing rank as we travel toward root node.

- Property 2: Any root node of rank k has at least 2^k nodes in its tree.
 - Can only increase rank when merging two roots with same rank.
 - Rank k root required merging **two** trees with roots of rank k 1.
 - Root of rank k 1 needed two tree roots of k 2.

- Property 2: Any root node of rank k has at least 2^k nodes in its tree.
 - Can only increase rank when merging two roots with same rank.
 - Rank k root required merging **two** trees with roots of rank k 1.
 - Root of rank k 1 needed two tree roots of k 2.

 Property 2: Any root node of rank k has at least 2^k nodes in its tree.

k = 0, at least $2^0 = 1$ node in tree

 Property 2: Any root node of rank k has at least 2^k nodes in its tree.

k = 0, at least $2^0 = 1$ node in tree

k = 1, at least $2^1 = 2$ nodes in tree

 Property 2: Any root node of rank k has at least 2^k nodes in its tree.

k = 0, at least $2^0 = 1$ node in tree

k = 1, at least $2^1 = 2$ nodes in tree

Adding lower rank doesn't change lower bound.

 Property 2: Any root node of rank k has at least 2^k nodes in its tree.

k = 0, at least $2^0 = 1$ node in tree

k = 1, at least $2^1 = 2$ nodes in tree

k = 2, at least $2^2 = 4$ nodes in tree. Can't have 3 nodes as it would contradict the fact that E has rank 1

- Property 3: If there are n elements overall in a set, there can be at most $n / 2^k$ nodes of rank k.
 - Root has at least 2^k descendants (including self).
 - Internal nodes also have at least 2^k descendants as they were roots in the past, where k is rank of internal node.
 - Different rank-k nodes cannot have common descendants.
 - Merging at root.
 - Any element has at most one ancestor of rank k.

- Property 3: If there are n elements overall, there can be at most $n / 2^k$ nodes of rank k.
 - We have some sort to tree structure that's balanced.
 - Maximum rank is log n.
 - Tree have maximum possible height of log n.
 - Running time of find and union upper bounded by log n.

- Property 3: If there are n elements overall, there can be at most $n / 2^k$ nodes of rank k.
 - Consider n = 4.

- Property 3: If there are n elements overall, there can be at most $n / 2^k$ nodes of rank k.
 - Consider n = 4.

Can't have higher rank than 2 without more elements.

- Property 3: If there are n elements overall, there can be at most $n / 2^k$ nodes of rank k.
 - Consider n = 4.

Can't have higher rank than 2 without more elements.

At most $4/2^2 = 1$ element of rank 2

- Property 3: If there are n elements overall, there can be at most $n / 2^k$ nodes of rank k.
 - Consider n = 4.

Can't have higher rank than 2 without more elements.

At most $4/2^2 = 1$ element of rank 2

At most $4/2^1 = 2$ elements of rank 1

- Property 3: If there are n elements overall, there can be at most $n / 2^k$ nodes of rank k.
 - Consider n = 4.

Can't have higher rank than 2 without more elements.

At most $4/2^2 = 1$ element of rank 2

At most $4/2^1 = 2$ elements of rank 1

At most $4/2^0 = 4$ elements of rank 0


```
kruskal (G, v):
 for all vertices v: makeset(v)
 X = \{\}
 sort edges by weight
 for edge (u, v) in sorted edges E:
   if find(u) \neq find(v):
    add edge (u, v) to X
    union(u, v)
makeset(v):
 \pi(v) = v # parent of v
 rank(v) = 0
find(v):
 while v \neq \pi(v): v = \pi(v)
 return v
```

```
union(x, y):
    r<sub>x</sub> = find(x)
    r<sub>y</sub> = find(y)
    if r_x = r_y: return
    if rank(r_x) > rank(r_y):
        \pi(r_y) = r_x
    else:
        \pi(r_x) = r_y
    if rank(r_x) > rank(r_y):
        rank(r_x) = rank(r_y) + 1
```

Sorting is O(|E| log(|E|)) | |E| iterations. | find and union take O(log(|V|)) | Kruskal takes O(|E| log(|E|) + |E| log(|V|))

- Let's keep trees short,
- On find, have all nodes all path to root point to root.
- Increases cost of find.
- But when considering sequences of find and union operations, amortized (average) cost becomes bit more than O(1).

```
find(v):

while v \neq \pi(v): \pi(v) = find(\pi(v))

return \pi(v)
```

makeset(A), makeset(B), ..., makeset(G)

$$(F^0)$$

union(A, D), union(B, E), union(C, F)

union(C, G)

- G's root is G.
- C's root is F.
- Connect G to F as F has higher rank.

union(B, A)

- B's root is E.
- A's root is D.
- D and E has same rank. Increment rank of new root (D).

find(B)

find(B)

- B's root is D.
- B is in path to root. Connect it to D. Rank of B doesn't change.

union(B, G)

- B's root is now D.
- G's root is F.
- Connect F to D as D has higher rank.
- G on path to F.

find(G)

find(G)

- G's root is now D.
- G on path to D. Connect G to D. C is not on path.

- Don't worry too much about path compression proof, but...
- Know log*(n).
 - The number of successively applying log operations on *n* to get it down to 1.
 - $\log^*(1000) = 4$. $\log \log \log \log 1000 \le 1$

```
find(v):

while v \neq \pi(v): \pi(v) = find(\pi(v))

return \pi(v)
```

- · Also understand idea of amortized cost.
- Single operation in worst case may take longer due to some overhead.
- But applying a sequence of operations allows us to distribute that overhead to many number of operations.
- Overhead cost applied only from time to time.
- Total cost averages out over each operation in sequence.

- Example: resizing array.
- · Only need to resizing when array is full.
- Resize array to be 2x as before.
- Overhead is copying: O(n)
- · But until array is full, it's constant appending and indexing.
- Overhead costs is amortized or averaged over the many appending and indexing operations.