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PRIM’S ALGORITHM

• Grow tree similar to Dijkstra’s algorithm. 

• Take lightest edge that connects existing tree to unseen vertex. 

• O((|V| + |E|) log |V|) with binary heap 

• O(|E| + |V| log |V|) with Fibonacci heap 

• Demo

generic_MST(G): 
start S = v: 
find lightest edge (x, y) 
in crossing (S, V - S) 

S = S union {y}

prim (G, s): 
c[v] = infinity 
c[s] = 0 
prev[s] = s 
PriorityQueue.add(G.V, c) 
while PQ not empty: 
u = PQ.DeleteMin() 
add (u, prev(u)) to T 
for edge (u, v): 
if w(u, v) < c(v): 
c(v) = w(u, v) 
prev(v) = u 
PQ.DecreaseKey(v, c[v])

http://visualgo.net/mst
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KRUSKAL’S ALGORITHM

• Choose lightest edge that does not form a cycle. 

• O(|E| log |E| + |E| log |V|) = O(|E| log |E|) = O(|E| log |V|) 

• Demo 

• How do we actually achieve the above runtime?

http://visualgo.net/mst
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KRUSKAL’S ALGORITHM

• At any point, we have partial solutions: sets of vertices that are 
connected based on the lightest edge at some previous iteration. 

• In the next step, we can join these sets together (vertex by itself 
is a set). 

• Make use of disjoint set such that joining two elements from 
different sets joins all elements for the vertices’ respective sets.
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DISJOINT SETS

• Union-Find Implementation 

• Tree with directed edges pointing towards root. 

• Union-By-Rank (O(log n) time per operation) 

• Point smaller rank root to larger rank root. 

• Path Compression (O(log n) amortized time) 

• On union, point all descendants of smaller rank root (inclusive) 
to larger rank root.
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UNION-FIND

• Each disjoint set is a directed tree with edges point to root. 

• Consider a vertex’s rank to be reverse height of vertex in the tree. 
(Root rank is height, direct children: height - 1, leaf: 0) 

• Finding a vertex returns the root of tree that vertex is in. 

• Union of two vertices join at root. Directed edge from smaller 
rank root to larger rank root. 

• If ranks are equal, increment new root by 1
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UNION-FIND

kruskal (G, v): 
for all vertices v: makeset(v) 
X = {} 
sort edges by weight 
for edge (u, v) in sorted edges E: 
if find(u) ≠ find(v): 
add edge (u, v) to X 
union(u, v)

makeset(v): 
π(v) = v     # parent of v 
rank(v) = 0

find(v): 
while v ≠ π(v): v = π(v) 
return v

union(x, y): 
rx = find(x) 
ry = find(y) 
if rx = ry: return 
if rank(rx) > rank(ry): 
π(ry) = rx 

else: 
π(rx) = ry 
if rank(rx) > rank(ry): 
rank(rx) = rank(ry) + 1
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UNION-FIND

B0A0

D0

C0

G0E0 F0

makeset(A), makeset(B), …, makeset(G)
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UNION-FIND

B0A0

D0

C0

G0E0 F0

union(A, D), union(B, E), union(C, F)
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UNION-FIND

A0 C0

union(A, D), union(B, E), union(C, F)

B0

D1 E1 F1 G0
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UNION-FIND

A0 C0B0

D1 E1 F1 G0

union(C, G)
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UNION-FIND

union(C, G) 
- G’s root is G. 
- C’s root is F. 
- Connect G to F as F has higher rank.

A0 C0B0

D1 E1 F1

G0
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UNION-FIND

union(E, A)

A0 C0B0

D1 E1 F1

G0
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UNION-FIND

union(E, A) 
- E’s root is E. 
- A’s root is D. 
- D and E has same rank. Increment rank of new root (D). 

A0 C0

B0

D2

E1

F1

G0
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UNION-FIND

A0 C0

B0

D2

E1

F1

G0

union(B, G)
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UNION-FIND

union(B, G) 
- B’s root is now D. 
- G’s root is F. 
- Connect F to D as D has higher rank.

A0

C0B0

D2

E1 F1

G0
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UNION-FIND

• Property 1: A node’s rank is smaller than the node’s parent’s rank. 

• Rank of node is height of subtree rooted at that node. 

• Strictly increasing rank as we travel toward root node.
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UNION-FIND

• Property 2: Any root node of rank k has at least 2k nodes in its 
tree. 

• Can only increase rank when merging two roots with same rank. 

• Rank k root required merging two trees with roots of rank k - 1. 

• Root of rank k - 1 needed two tree roots of k - 2.

B1

A2

C1

D0 E0 F0 G0
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UNION-FIND

• Property 2: Any root node of rank k has at least 2k nodes in its 
tree. 

• Can only increase rank when merging two roots with same rank. 

• Rank k root required merging two trees with roots of rank k - 1. 

• Root of rank k - 1 needed two tree roots of k - 2.

B1

A2

C1

D0 E0 F0 G0 H0
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UNION-FIND

• Property 2: Any root node of rank k has at least 2k nodes in its 
tree.

A0 k = 0, at least 20 = 1 node in tree
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UNION-FIND

• Property 2: Any root node of rank k has at least 2k nodes in its 
tree.

A0 k = 0, at least 20 = 1 node in tree

A0

D1 k = 1, at least 21 = 2 nodes in tree
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UNION-FIND

• Property 2: Any root node of rank k has at least 2k nodes in its 
tree.

A0 k = 0, at least 20 = 1 node in tree

A0

D1 k = 1, at least 21 = 2 nodes in tree

C0

F1

G0

Adding lower rank doesn’t change lower bound.
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UNION-FIND

• Property 2: Any root node of rank k has at least 2k nodes in its 
tree.

A0 k = 0, at least 20 = 1 node in tree

A0

D1 k = 1, at least 21 = 2 nodes in tree

C0

F1

G0

Adding lower rank doesn’t change lower bound.

k = 2, at least 22 = 4 nodes in tree. 
Can’t have 3 nodes as it would 
contradict the fact that E has 
rank 1

A0

B0

D2

E1
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UNION-FIND

• Property 3: If there are n elements overall in a set, there can be at 
most n / 2k nodes of rank k. 

• Root has at least 2k descendants (including self). 

• Internal nodes also have at least 2k descendants as they were 
roots in the past, where k is rank of internal node. 

• Different rank-k nodes cannot have common descendants. 

• Merging at root. 

• Any element has at most one ancestor of rank k.
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UNION-FIND

• Property 3: If there are n elements overall, there can be at most       
n / 2k nodes of rank k. 

• We have some sort to tree structure that’s balanced. 

• Maximum rank is log n. 

• Tree have maximum possible height of log n. 

• Running time of find and union upper bounded by log n.
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UNION-FIND

• Property 3: If there are n elements overall, there can be at most       
n / 2k nodes of rank k. 

• Consider n = 4.

A0

B0

D2

E1
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UNION-FIND

• Property 3: If there are n elements overall, there can be at most       
n / 2k nodes of rank k. 

• Consider n = 4.

A0

B0

D2

E1

Can’t have higher rank than 2 without more elements.
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UNION-FIND

• Property 3: If there are n elements overall, there can be at most       
n / 2k nodes of rank k. 

• Consider n = 4.

A0

B0

D2

E1

Can’t have higher rank than 2 without more elements.
At most 4 / 22 = 1 element of rank 2
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UNION-FIND

• Property 3: If there are n elements overall, there can be at most       
n / 2k nodes of rank k. 

• Consider n = 4.

A0

B0

D2

E1

Can’t have higher rank than 2 without more elements.
At most 4 / 22 = 1 element of rank 2
At most 4 / 21 = 2 elements of rank 1
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UNION-FIND

• Property 3: If there are n elements overall, there can be at most       
n / 2k nodes of rank k. 

• Consider n = 4.

A0

B0

D2

E1

Can’t have higher rank than 2 without more elements.
At most 4 / 22 = 1 element of rank 2
At most 4 / 21 = 2 elements of rank 1
At most 4 / 20 = 4 elements of rank 0

A0 B0 D0 E0
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UNION-FIND

kruskal (G, v): 
for all vertices v: makeset(v) 
X = {} 
sort edges by weight 
for edge (u, v) in sorted edges E: 
if find(u) ≠ find(v): 
add edge (u, v) to X 
union(u, v)

makeset(v): 
π(v) = v     # parent of v 
rank(v) = 0

find(v): 
while v ≠ π(v): v = π(v) 
return v

union(x, y): 
rx = find(x) 
ry = find(y) 
if rx = ry: return 
if rank(rx) > rank(ry): 
π(ry) = rx 

else: 
π(rx) = ry 
if rank(rx) > rank(ry): 
rank(rx) = rank(ry) + 1

Sorting is O( |E| log(|E|) ) 
|E| iterations. 
find and union take O(log(|V|) ) 
Kruskal takes O(|E| log(|E|) + |E| log(|V|) )
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PATH COMPRESSION

• Let’s keep trees short, 

• On find, have all nodes all path to root point to root. 

• Increases cost of find. 

• But when considering sequences of find and union operations, 
amortized (average) cost becomes bit more than O(1).

find(v): 
while v ≠ π(v): π(v) = find(π(v)) 
return π(v)
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PATH COMPRESSION

B0A0

D0

C0

G0E0 F0

makeset(A), makeset(B), …, makeset(G)
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A0 C0

union(A, D), union(B, E), union(C, F)

B0

D1 E1 F1 G0

PATH COMPRESSION
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union(C, G) 
- G’s root is G. 
- C’s root is F. 
- Connect G to F as F has higher rank.

A0 C0B0

D1 E1 F1

G0

PATH COMPRESSION
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union(B, A) 
- B’s root is E. 
- A’s root is D. 
- D and E has same rank. Increment rank of new root (D). 

A0 C0

B0

D2

E1

F1

G0

PATH COMPRESSION
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find(B)

A0 C0

B0

D2

E1

F1

G0

PATH COMPRESSION



Raymond Chan, UC Berkeley Fall 2017

find(B) 
- B’s root is D. 
- B is in path to root. Connect it to D. Rank of B doesn’t change. 

A0 C0

B0

D2

E1

F1

G0

PATH COMPRESSION
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union(B, G) 
- B’s root is now D. 
- G’s root is F. 
- Connect F to D as D has higher rank. 
- G on path to F.

A0

C0

D2

E1 F1

PATH COMPRESSION

B0 G0
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find(G)

A0

C0

D2

E1 F1

PATH COMPRESSION

B0 G0
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find(G) 
- G’s root is now D. 
- G on path to D. Connect G to D. C is not on path.

A0

C0

D2

E1 F1

G0

PATH COMPRESSION

B0
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PATH COMPRESSION

• Don’t worry too much about path compression proof, but… 

• Know log*(n). 

• The number of successively applying log operations on n to get 
it down to 1. 

• log*(1000) = 4. log log log log 1000 ≤ 1

find(v): 
while v ≠ π(v): π(v) = find(π(v)) 
return π(v)
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PATH COMPRESSION

• Also understand idea of amortized cost. 

• Single operation in worst case may take longer due to some 
overhead. 

• But applying a sequence of operations allows us to distribute that 
overhead to many number of operations. 

• Overhead cost applied only from time to time. 

• Total cost averages out over each operation in sequence.
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PATH COMPRESSION

• Example: resizing array. 

• Only need to resizing when array is full. 

• Resize array to be 2x as before. 

• Overhead is copying: O(n) 

• But until array is full, it’s constant appending and indexing. 

• Overhead costs is amortized or averaged over the many 
appending and indexing operations.


