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APPROXIMATING SET COVER

• See board or notes/video

http://raychan3.github.io/assets/teaching/fa17/disc07.pdf
https://www.youtube.com/watch?v=h319psaFCds
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GREEDY ALGORITHM PROOFS

• Goal is to maximize or minimize a “cost” subject to constraints. 

• Most greedy algorithms are linear or O(n log n) time. 

• Approach 1: 

• Exchange Argument 

• Approach 2: 

• Greedy is at least better than Optimal
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EXCHANGE ARGUMENT

• Suppose you have an optimal solution S* and greedy solution S. 

• Look at the first value in which greedy solution and optimal differ. 
Usually talk about an ordering. Let’s say greedy produced X and 
optimal has Y at that position of the ordering. 

• Switch Y with X in optimal solution. Show that total cost is not 
worse (either the same or better). 

• By induction, we can iterate over both solutions, exchange values 
until optimal becomes greedy. Since total cost has not become 
worse off in each step, greedy solution is optimal. 

• Discussion today: Service Scheduling
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GREEDY IS AT LEAST BETTER THAN OPTIMAL

• Suppose you have an optimal solution S* and greedy solution S. 

• Look at the first value in which greedy and optimal differ. Usually 
talk about an ordering. 

• Prove that at this point, the greedy solution is at least as better as 
the optimal solution. And by induction, the greedy solution is 
better at each differing value. 

• Prove optimality via contradiction. Assume greedy is not optimal. 
Use above point to derive a contradiction. 

• Discussion today: Meeting Scheduling
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APPROACH 1 VS 2

• Use exchange argument (1) instead of contradictory proofs (2) 
because there could be multiple optimal solutions. 

• Both require induction. 

• Nuanced difference. Exchange argument takes some optimal 
ordering and swaps elements in the ordering that violate greedy 
heuristic. We will reach greedy without increasing cost. 

• Approach 2 compares specific differing values in greedy and 
optimal solutions. Choosing the greedy value at that point is at 
least as good as optimal.
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HUFFMAN ENCODING

• Motivation: Given symbols and their respective probabilities, can 
we encode the symbols to prevent ambiguity and minimize length 
of longest encoding? 

• Prefix-free encoding: no codeword can be a prefix of another 
codeword. 

• Use full binary tree. Nodes have 0 or 2 children. 

• Leaves are symbols. 

• Internal nodes (v) have 2 children (u, w) with probability (or 
frequency) equal to sum of children’s probabilities. f(v) = f(u) + f(w)
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HUFFMAN ENCODING

• The frequency of a (sub)tree at it’s root is the sum of all 
frequencies.

Symbol Frequency Codeword

A 70 0
B 3 100
C 20 101

D 37 11

Lower the symbol, more it’s frequency gets repeated. 
Smallest frequency should be at bottom.

A [70]

0 1

B [3] C [20]

[23]
D [37]

[60]

[130]
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HUFFMAN ENCODING

Huffman(f[1..n]) 
Make each symbol into single tree node 
While more than one tree: 
Merge two lowest frequency trees into a new tree

Huffman(f[1..n]) 
Priority Queue PQ 
for i in {1..n}: PQ.insert(i) 
for k = n + 1 to 2n - 1: 
i, j = PQ.deleteMin(), PQ.deleteMin() 
Create node k with children i, j 
f[k] = f[i] + f[j] 
PQ.insert(k)
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HUFFMAN ENCODING

• When inserting internal node into PQ, it may be popped off 
immediately or later.

Symbol Frequency
A 10/100 
B 30/100
C 16/100
D 34/100
E 10/100

A [10] E [10]

[20] C [16]

[36]

[100]

[64]

B [30] D [36]

Internal node 20 gets popped off with C in iteration after being pushed into PQ. 
Internal node 36 was until B and D gets popped off before being removed from PQ.


