
CS 170 
DISCUSSION 7

GREEDY ALGORITHMS 

Raymond Chan 
UC Berkeley Fall 17



Raymond Chan, UC Berkeley Fall 2017

APPROXIMATING SET COVER

• See board or notes/video

http://raychan3.github.io/assets/teaching/fa17/disc07.pdf
https://www.youtube.com/watch?v=h319psaFCds


Raymond Chan, UC Berkeley Fall 2017

GREEDY ALGORITHM PROOFS

• Goal is to maximize or minimize a “cost” subject to constraints. 

• Most greedy algorithms are linear or O(n log n) time. 

• Approach 1: 

• Exchange Argument 

• Approach 2: 

• Greedy is at least better than Optimal



Raymond Chan, UC Berkeley Fall 2017

EXCHANGE ARGUMENT

• Suppose you have an optimal solution S* and greedy solution S. 

• Look at the first value in which greedy solution and optimal differ. 
Usually talk about an ordering. Let’s say greedy produced X and 
optimal has Y at that position of the ordering. 

• Switch Y with X in optimal solution. Show that total cost is not 
worse (either the same or better). 

• By induction, we can iterate over both solutions, exchange values 
until optimal becomes greedy. Since total cost has not become 
worse off in each step, greedy solution is optimal. 

• Discussion today: Service Scheduling



Raymond Chan, UC Berkeley Fall 2017

GREEDY IS AT LEAST BETTER THAN OPTIMAL

• Suppose you have an optimal solution S* and greedy solution S. 

• Look at the first value in which greedy and optimal differ. Usually 
talk about an ordering. 

• Prove that at this point, the greedy solution is at least as better as 
the optimal solution. And by induction, the greedy solution is 
better at each differing value. 

• Prove optimality via contradiction. Assume greedy is not optimal. 
Use above point to derive a contradiction. 

• Discussion today: Meeting Scheduling



Raymond Chan, UC Berkeley Fall 2017

APPROACH 1 VS 2

• Use exchange argument (1) instead of contradictory proofs (2) 
because there could be multiple optimal solutions. 

• Both require induction. 

• Nuanced difference. Exchange argument takes some optimal 
ordering and swaps elements in the ordering that violate greedy 
heuristic. We will reach greedy without increasing cost. 

• Approach 2 compares specific differing values in greedy and 
optimal solutions. Choosing the greedy value at that point is at 
least as good as optimal.



Raymond Chan, UC Berkeley Fall 2017

HUFFMAN ENCODING

• Motivation: Given symbols and their respective probabilities, can 
we encode the symbols to prevent ambiguity and minimize length 
of longest encoding? 

• Prefix-free encoding: no codeword can be a prefix of another 
codeword. 

• Use full binary tree. Nodes have 0 or 2 children. 

• Leaves are symbols. 

• Internal nodes (v) have 2 children (u, w) with probability (or 
frequency) equal to sum of children’s probabilities. f(v) = f(u) + f(w)



Raymond Chan, UC Berkeley Fall 2017

HUFFMAN ENCODING

• The frequency of a (sub)tree at it’s root is the sum of all 
frequencies.

Symbol Frequency Codeword

A 70 0
B 3 100
C 20 101

D 37 11

Lower the symbol, more it’s frequency gets repeated. 
Smallest frequency should be at bottom.

A [70]

0 1

B [3] C [20]

[23]
D [37]

[60]

[130]



Raymond Chan, UC Berkeley Fall 2017

HUFFMAN ENCODING

Huffman(f[1..n]) 
Make each symbol into single tree node 
While more than one tree: 
Merge two lowest frequency trees into a new tree

Huffman(f[1..n]) 
Priority Queue PQ 
for i in {1..n}: PQ.insert(i) 
for k = n + 1 to 2n - 1: 
i, j = PQ.deleteMin(), PQ.deleteMin() 
Create node k with children i, j 
f[k] = f[i] + f[j] 
PQ.insert(k)



Raymond Chan, UC Berkeley Fall 2017

HUFFMAN ENCODING

• When inserting internal node into PQ, it may be popped off 
immediately or later.

Symbol Frequency
A 10/100 
B 30/100
C 16/100
D 34/100
E 10/100

A [10] E [10]

[20] C [16]

[36]

[100]

[64]

B [30] D [36]

Internal node 20 gets popped off with C in iteration after being pushed into PQ. 
Internal node 36 was until B and D gets popped off before being removed from PQ.


