CS 170
DISCUSSION 8

DYNAMIC PROGRAMMING

Raymond Chan
raychan3.github.io/cs170/fa17.html
UC Berkeley Fall 17

http://raychan3.github.io/cs170/fa17.html

DYNAMIC PROGRAMMING

* Recursive problems uses the subproblem(s) solve the current one.

* Dynamic programming recognizes that such problems have many
and overlapping subproblems.

* Can have one or more starting states.

Raymond Chan, UC Berkeley Fall 2017

DYNAMIC PROGRAMMING

Define subproblems

* ex. S(i, j) is some solution of subproblem (i, j) of n
Recurrence relation of subproblems

* How S(i, j) can use subproblems to solve it

Base Case(s)

* ex.S(i, j) =0wheni=]j

Most have polynomial complexity. Some are exponential.

Better running time than backtracking, brute-force.

Raymond Chan, UC Berkeley Fall 2017

DYNAMIC PROGRAMMING

* Tree Recursion Memoization
* Recognize that tree recursive calls overlap.

» Cache return values for subproblems so that you can use later.

e Top Down Approach.
 |terative Dynamic Programming
Starts from base case.
Expand subproblems until you get to the subproblem you want.
Recognizes which subproblems comes first.

Bottom Up Approach.

Raymond Chan, UC Berkeley Fall 2017

DYNAMIC PROGRAMMING

* Directed Acyclic Graph underlying structure
» Each subproblem is a vertex.

* Directed edges (u, v) represents constraint that we need to solve
subproblem u before subproblem v.

Raymond Chan, UC Berkeley Fall 2017

LONGEST INCREASING SUBSEQUENCE

* Problem

» Given sequence of number aq, a2, .. an, find longest increasing
sequence of numbers.

* Subproblem
L(i) as longest increasing sequence up to the i-th number.
Having a partial solution for your original problem.

L(i) needs longest increasing sequence of j, for j <.

Goal is L(n)

Raymond Chan, UC Berkeley Fall 2017

https://en.wikipedia.org/wiki/Longest_increasing_subsequence
https://en.wikipedia.org/wiki/Longest_increasing_subsequence

EXAMPLES

Longest Increasing Subsequence
Edit Distance
Knapsack with and without repetition

note: may not cover any (if at all) of the examples.

Raymond Chan, UC Berkeley Fall 2017

LONGEST INCREASING SUBSEQUENCE

e Base Case

e Recurrence
e L(i) = max (L(i), L(j) + 1)) for all j < i and a]j] < ali]

« Either we start new sequence with base case, or add a; to
longest prior sequence given still increasing

Raymond Chan, UC Berkeley Fall 2017

LONGEST INCREASING SUBSEQUENCE

ifaljl < akil:
LG = max (i s [6g) + 1)

Add pointer to actually find sequence. Time complexity: O(n?)

Space complexity: O(n)

Ti=ak | < sk

LEL = max(L Gy L))t)
1f updated:

prev(i) = j Can also think of it as longest DAG

of increasing subsequences.

Raymond Chan, UC Berkeley Fall 2017

EDIT DISTANCE

* Problem

* Given 2 strings x[1..n] and y[1..m], find edit distance between
the 2.

* Subproblem
* Look at only partial strings.
x[1..i] and y[1..j].
E(i, j) is the edit distance of x (up to index i) and (y up to index j).

Answer at E(n, m).

Raymond Chan, UC Berkeley Fall 2017

https://en.wikipedia.org/wiki/Edit_distance

EDIT DISTANCE

e Recurrence Relation

Bl . jJ=minCE(L -1 jEt b EU - 1) P B0 =1 1)+ diftl &)

diff(i, j) = 1 if x[i] # x[j] else O

Can delete x[i] and get 1 plus edit distance of all characters
before i and at current j.

Can insert y[j] and get 1 plus edit distance of all characters at
current j and before i.

If x[i] = yljl, then we have edit distance of character before i and j.

If x[i] # y[jl, then we substitute y[j] for x[i]. 1 plus above.

Raymond Chan, UC Berkeley Fall 2017

EDIT DISTANCE

e Base cases
- B, Or= L E0 j=]
* Time complexity: O(nm)

* Space complexity: O(nm)

Raymond Chan, UC Berkeley Fall 2017

EDIT DISTANCE

* |f stuck, try drawing a 2D matrix.

* Number of arguments in subproblem definition determines
dimension of matrix.

POLYNOMI AL
0123456 789 10

O o0 NOULPEA, WN P O

[EEY
o

r > — A4 zZ2zm2zZ20Q U X m

[}
[T}

|

Raymond Chan, UC Berkeley Fall 2017

KNAPSACK WITH REPETITION

« Problem

* Given items with values and weights, find the highest value items
such that total weight is at most W. Can re-use items (multiset).

e Subproblem
At some point, you have a knapsack of items and weight.
K(w) as best value knapsack with weight w.

Need solutions to K(w') for w' < w.

Answer at K(W)

Raymond Chan, UC Berkeley Fall 2017

KNAPSACK WITH REPETITION

Recurrence Formula
e K(w) = max;(Kiw-w)+ v;)forw-w; =0

* Look at item i. If we can still fit in bag, put it in to see if can get
better value for weight w with value of this item.

Base Case

Time complexity: O(nW)

Space complexity: O(W)

Raymond Chan, UC Berkeley Fall 2017

KNAPSACK WITHOUT REPETITION

* Problem

» Given items with values and weights, find the highest value items
such that total weight is at most W. Cannot re-use items (subset).

* Subproblem
At some point, you have a knapsack of items and weight.
But lets say we have only look at items 1..i out of n items.

K(w, i) as best value knapsacks with weight w having only
considered items 1..i.

Find K(W, n).

Raymond Chan, UC Berkeley Fall 2017

KNAPSACK WITHOUT REPETITION

Recurrence Relation

* Look at item i. Either we add it to our bag (if it fits) or we don't.
e K(w,) =max (Kw-w;i-1)+v;, Kiw,i-1))

 Typical tree recursion choice at each step.

Base Case

» K(0,0)=0

Time Complexity: O(nW)

Space Complexity: O(nW)

Raymond Chan, UC Berkeley Fall 2017

KNAPSACK TIME COMPLEXITY

Knapsack runtime: O(nW).

Length of an array is the determining factor for most inputs.
* Processors can handle those 4-8 byte data types easily.

* Adding one more elements adds 4-8 bytes.

In knapsack, | can easily have you find best value bag with weight that is very
large (e.x. 1,000,000,000).

W is represented as binary. Add 1 more bit to W, double the running time.
Looking at the “size” of input (what number is W?), we have polynomial.

But when | look at the length of input (number of bits in W), we have
exponential.

Raymond Chan, UC Berkeley Fall 2017

