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DYNAMIC PROGRAMMING

* Recursive problems uses the subproblem(s) solve the current one.

* Dynamic programming recognizes that such problems have many
and overlapping subproblems.

* Can have one or more starting states.
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DYNAMIC PROGRAMMING

Define subproblems

* ex. S(i, j) is some solution of subproblem (i, j) of n
Recurrence relation of subproblems

* How S(i, j) can use subproblems to solve it

Base Case(s)

* ex.S(i, j) =0wheni=]j

Most have polynomial complexity. Some are exponential.

Better running time than backtracking, brute-force.
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DYNAMIC PROGRAMMING

* Tree Recursion Memoization
* Recognize that tree recursive calls overlap.

» Cache return values for subproblems so that you can use later.

e Top Down Approach.
 |terative Dynamic Programming
Starts from base case.
Expand subproblems until you get to the subproblem you want.
Recognizes which subproblems comes first.

Bottom Up Approach.
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DYNAMIC PROGRAMMING

* Directed Acyclic Graph underlying structure
» Each subproblem is a vertex.

* Directed edges (u, v) represents constraint that we need to solve
subproblem u before subproblem v.
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LONGEST INCREASING SUBSEQUENCE

* Problem

» Given sequence of number aq, a2, .. an, find longest increasing
sequence of numbers.

* Subproblem
L(i) as longest increasing sequence up to the i-th number.
Having a partial solution for your original problem.

L(i) needs longest increasing sequence of j, for j <.

Goal is L(n)
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https://en.wikipedia.org/wiki/Longest_increasing_subsequence
https://en.wikipedia.org/wiki/Longest_increasing_subsequence

EXAMPLES

Longest Increasing Subsequence
Edit Distance
Knapsack with and without repetition

note: may not cover any (if at all) of the examples.
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LONGEST INCREASING SUBSEQUENCE

e Base Case

e Recurrence
e L(i) = max ( L(i), L(j) + 1) ) for all j < i and a]j] < ali]

« Either we start new sequence with base case, or add a; to
longest prior sequence given still increasing
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LONGEST INCREASING SUBSEQUENCE

ifaljl < akil:
LG = max (i s [ 6g) + 1)

Add pointer to actually find sequence. Time complexity: O(n?)

Space complexity: O(n)

Ti=ak | < sk

LEL = max(L Gy L))t )
1f updated:

prev(i) = j Can also think of it as longest DAG

of increasing subsequences.
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EDIT DISTANCE

* Problem

* Given 2 strings x[1..n] and y[1..m], find edit distance between
the 2.

* Subproblem
* Look at only partial strings.
x[1..i] and y[1..j].
E(i, j) is the edit distance of x (up to index i) and (y up to index j).

Answer at E(n, m).
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https://en.wikipedia.org/wiki/Edit_distance

EDIT DISTANCE

e Recurrence Relation

Bl . jJ=minCE(L -1 jEt b EU - 1) P B0 =1 1)+ diftl &)

diff(i, j) = 1 if x[i] # x[j] else O

Can delete x[i] and get 1 plus edit distance of all characters
before i and at current j.

Can insert y[j] and get 1 plus edit distance of all characters at
current j and before i.

If x[i] = yljl, then we have edit distance of character before i and j.

If x[i] # y[jl, then we substitute y[j] for x[i]. 1 plus above.
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EDIT DISTANCE

e Base cases
- B, Or= L E0 j=]
* Time complexity: O(nm)

* Space complexity: O(nm)
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EDIT DISTANCE

* |f stuck, try drawing a 2D matrix.

* Number of arguments in subproblem definition determines
dimension of matrix.
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KNAPSACK WITH REPETITION

« Problem

* Given items with values and weights, find the highest value items
such that total weight is at most W. Can re-use items (multiset).

e Subproblem
At some point, you have a knapsack of items and weight.
K(w) as best value knapsack with weight w.

Need solutions to K(w') for w' < w.

Answer at K(W)

Raymond Chan, UC Berkeley Fall 2017




KNAPSACK WITH REPETITION

Recurrence Formula
e K(w) = max;( Kiw-w)+ v;)forw-w; =0

* Look at item i. If we can still fit in bag, put it in to see if can get
better value for weight w with value of this item.

Base Case

Time complexity: O(nW)

Space complexity: O(W)
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KNAPSACK WITHOUT REPETITION

* Problem

» Given items with values and weights, find the highest value items
such that total weight is at most W. Cannot re-use items (subset).

* Subproblem
At some point, you have a knapsack of items and weight.
But lets say we have only look at items 1..i out of n items.

K(w, i) as best value knapsacks with weight w having only
considered items 1..i.

Find K(W, n).
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KNAPSACK WITHOUT REPETITION

Recurrence Relation

* Look at item i. Either we add it to our bag (if it fits) or we don't.
e K(w, ) =max (Kw-w;i-1)+v;, Kiw,i-1))

 Typical tree recursion choice at each step.

Base Case

» K(0,0)=0

Time Complexity: O(nW)

Space Complexity: O(nW)
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KNAPSACK TIME COMPLEXITY

Knapsack runtime: O(nW).

Length of an array is the determining factor for most inputs.
* Processors can handle those 4-8 byte data types easily.

* Adding one more elements adds 4-8 bytes.

In knapsack, | can easily have you find best value bag with weight that is very
large (e.x. 1,000,000,000).

W is represented as binary. Add 1 more bit to W, double the running time.
Looking at the “size” of input (what number is W?), we have polynomial.

But when | look at the length of input (number of bits in W), we have
exponential.
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