
CS 170
DISCUSSION 8

DYNAMIC PROGRAMMING

Raymond Chan
raychan3.github.io/cs170/fa17.html

UC Berkeley Fall 17

http://raychan3.github.io/cs170/fa17.html

Raymond Chan, UC Berkeley Fall 2017

DYNAMIC PROGRAMMING

• Recursive problems uses the subproblem(s) solve the current one.

• Dynamic programming recognizes that such problems have many
and overlapping subproblems.

• Can have one or more starting states.

Raymond Chan, UC Berkeley Fall 2017

DYNAMIC PROGRAMMING

• Define subproblems

• ex. S(i, j) is some solution of subproblem (i, j) of n

• Recurrence relation of subproblems

• How S(i, j) can use subproblems to solve it

• Base Case(s)

• ex. S(i, j) = 0 when i = j

• Most have polynomial complexity. Some are exponential.

• Better running time than backtracking, brute-force.

Raymond Chan, UC Berkeley Fall 2017

DYNAMIC PROGRAMMING

• Tree Recursion Memoization

• Recognize that tree recursive calls overlap.

• Cache return values for subproblems so that you can use later.

• Top Down Approach.

• Iterative Dynamic Programming

• Starts from base case.

• Expand subproblems until you get to the subproblem you want.

• Recognizes which subproblems comes first.

• Bottom Up Approach.

Raymond Chan, UC Berkeley Fall 2017

DYNAMIC PROGRAMMING

• Directed Acyclic Graph underlying structure

• Each subproblem is a vertex.

• Directed edges (u, v) represents constraint that we need to solve
subproblem u before subproblem v.

Raymond Chan, UC Berkeley Fall 2017

LONGEST INCREASING SUBSEQUENCE

• Problem

• Given sequence of number a1, a2, …, an, find longest increasing
sequence of numbers.

• Subproblem

• L(i) as longest increasing sequence up to the i-th number.

• Having a partial solution for your original problem.

• L(i) needs longest increasing sequence of j, for j < i.

• Goal is L(n)

https://en.wikipedia.org/wiki/Longest_increasing_subsequence
https://en.wikipedia.org/wiki/Longest_increasing_subsequence

Raymond Chan, UC Berkeley Fall 2017

EXAMPLES

• Longest Increasing Subsequence

• Edit Distance

• Knapsack with and without repetition

• note: may not cover any (if at all) of the examples.

Raymond Chan, UC Berkeley Fall 2017

LONGEST INCREASING SUBSEQUENCE

• Base Case

• L(i) = 1

• Recurrence

• L(i) = max (L(i), L(j) + 1)) for all j < i and a[j] < a[i]

• Either we start new sequence with base case, or add ai to
longest prior sequence given still increasing

Raymond Chan, UC Berkeley Fall 2017

LONGEST INCREASING SUBSEQUENCE

for i = 1..n
L(i) = 1
for j = 1..i - 1
if a[j] < a[i]:
L(i) = max(L(i), L(j) + 1)

for i = 1..n
L(i) = 1
prev(i) = i
for j = 1..i - 1
if a[j] < a[i]:
L(i) = max(L(i), L(j) + 1)
if updated:
prev(i) = j

Add pointer to actually find sequence. Time complexity: O(n2)

Space complexity: O(n)

Can also think of it as longest DAG
of increasing subsequences.

Raymond Chan, UC Berkeley Fall 2017

EDIT DISTANCE

• Problem

• Given 2 strings x[1..n] and y[1..m], find edit distance between
the 2.

• Subproblem

• Look at only partial strings.

• x[1..i] and y[1..j].

• E(i, j) is the edit distance of x (up to index i) and (y up to index j).

• Answer at E(n, m).

https://en.wikipedia.org/wiki/Edit_distance

Raymond Chan, UC Berkeley Fall 2017

EDIT DISTANCE

• Recurrence Relation

• E(i, j) = min (E(i - 1, j) + 1, E(i, j - 1) + 1, E(i - 1, j - 1) + diff(i, j))

• diff(i, j) = 1 if x[i] ≠ x[j] else 0

• Can delete x[i] and get 1 plus edit distance of all characters
before i and at current j.

• Can insert y[j] and get 1 plus edit distance of all characters at
current j and before i.

• If x[i] = y[j], then we have edit distance of character before i and j.

• If x[i] ≠ y[j], then we substitute y[j] for x[i]. 1 plus above.

Raymond Chan, UC Berkeley Fall 2017

EDIT DISTANCE

• Base cases

• E(i, 0) = i, E(0, j) = j

• Time complexity: O(nm)

• Space complexity: O(nm)

Raymond Chan, UC Berkeley Fall 2017

EDIT DISTANCE

• If stuck, try drawing a 2D matrix.

• Number of arguments in subproblem definition determines
dimension of matrix.

Raymond Chan, UC Berkeley Fall 2017

KNAPSACK WITH REPETITION

• Problem

• Given items with values and weights, find the highest value items
such that total weight is at most W. Can re-use items (multiset).

• Subproblem

• At some point, you have a knapsack of items and weight.

• K(w) as best value knapsack with weight w.

• Need solutions to K(w’) for w’ < w.

• Answer at K(W)

Raymond Chan, UC Berkeley Fall 2017

KNAPSACK WITH REPETITION

• Recurrence Formula

• K(w) = maxi (K(w - wi)+ vi) for w - wi ≥ 0

• Look at item i. If we can still fit in bag, put it in to see if can get
better value for weight w with value of this item.

• Base Case

• K(0) = 0

• Time complexity: O(nW)

• Space complexity: O(W)

Raymond Chan, UC Berkeley Fall 2017

KNAPSACK WITHOUT REPETITION

• Problem

• Given items with values and weights, find the highest value items
such that total weight is at most W. Cannot re-use items (subset).

• Subproblem

• At some point, you have a knapsack of items and weight.

• But lets say we have only look at items 1..i out of n items.

• K(w, i) as best value knapsacks with weight w having only
considered items 1..i.

• Find K(W, n).

Raymond Chan, UC Berkeley Fall 2017

KNAPSACK WITHOUT REPETITION

• Recurrence Relation

• Look at item i. Either we add it to our bag (if it fits) or we don’t.

• K(w, i) = max (K(w - wi, i - 1) + vi, K(w, i - 1))

• Typical tree recursion choice at each step.

• Base Case

• K(0, 0) = 0

• Time Complexity: O(nW)

• Space Complexity: O(nW)

Raymond Chan, UC Berkeley Fall 2017

KNAPSACK TIME COMPLEXITY

• Knapsack runtime: O(nW).

• Length of an array is the determining factor for most inputs.

• Processors can handle those 4-8 byte data types easily.

• Adding one more elements adds 4-8 bytes.

• In knapsack, I can easily have you find best value bag with weight that is very
large (e.x. 1,000,000,000).

• W is represented as binary. Add 1 more bit to W, double the running time.

• Looking at the “size” of input (what number is W?), we have polynomial.

• But when I look at the length of input (number of bits in W), we have
exponential.

