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DYNAMIC PROGRAMMING

• Recursive problems uses the subproblem(s) solve the current one. 

• Dynamic programming recognizes that such problems have many 
and overlapping subproblems. 

• Can have one or more starting states.
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DYNAMIC PROGRAMMING

• Define subproblems 

• ex. S(i, j) is some solution of subproblem (i, j) of n 

• Recurrence relation of subproblems 

• How S(i, j) can use subproblems to solve it 

• Base Case(s) 

• ex. S(i, j) = 0 when i = j 

• Most have polynomial complexity. Some are exponential. 

• Better running time than backtracking, brute-force.
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DYNAMIC PROGRAMMING

• Tree Recursion Memoization 

• Recognize that tree recursive calls overlap. 

• Cache return values for subproblems so that you can use later. 

• Top Down Approach. 

• Iterative Dynamic Programming 

• Starts from base case. 

• Expand subproblems until you get to the subproblem you want. 

• Recognizes which subproblems comes first. 

• Bottom Up Approach.
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DYNAMIC PROGRAMMING

• Directed Acyclic Graph underlying structure 

• Each subproblem is a vertex. 

• Directed edges (u, v) represents constraint that we need to solve 
subproblem u before subproblem v.
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LONGEST INCREASING SUBSEQUENCE

• Problem 

• Given sequence of number a1, a2, …, an, find longest increasing 
sequence of numbers. 

• Subproblem 

• L(i) as longest increasing sequence up to the i-th number. 

• Having a partial solution for your original problem. 

• L(i) needs longest increasing sequence of j, for j < i. 

• Goal is L(n)

https://en.wikipedia.org/wiki/Longest_increasing_subsequence
https://en.wikipedia.org/wiki/Longest_increasing_subsequence
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EXAMPLES

• Longest Increasing Subsequence 

• Edit Distance 

• Knapsack with and without repetition 

• note: may not cover any (if at all) of the examples.
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LONGEST INCREASING SUBSEQUENCE

• Base Case 

• L(i) = 1 

• Recurrence 

• L(i) = max ( L(i), L(j) + 1) ) for all j < i and a[j] < a[i] 

• Either we start new sequence with base case, or add ai to 
longest prior sequence given still increasing
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LONGEST INCREASING SUBSEQUENCE

for i = 1..n 
L(i) = 1 
for j = 1..i - 1 
if a[j] < a[i]: 
L(i) = max(L(i), L(j) + 1) 

for i = 1..n 
L(i) = 1 
prev(i) = i 
for j = 1..i - 1 
if a[j] < a[i]: 
L(i) = max(L(i), L(j) + 1) 
if updated: 
prev(i) = j 

Add pointer to actually find sequence. Time complexity: O(n2) 

Space complexity: O(n)

Can also think of it as longest DAG  
of increasing subsequences.
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EDIT DISTANCE

• Problem 

• Given 2 strings x[1..n] and y[1..m], find edit distance  between 
the 2. 

• Subproblem 

• Look at only partial strings. 

• x[1..i] and y[1..j]. 

• E(i, j) is the edit distance of x (up to index i) and (y up to index j). 

• Answer at E(n, m).

https://en.wikipedia.org/wiki/Edit_distance
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EDIT DISTANCE

• Recurrence Relation 

• E(i, j) = min ( E(i - 1, j) + 1, E(i, j - 1) + 1, E(i - 1, j - 1) + diff(i, j) ) 

• diff(i, j) = 1 if x[i] ≠ x[j] else 0 

• Can delete x[i] and get 1 plus edit distance of all characters 
before i and at current j. 

• Can insert y[j] and get 1 plus edit distance of all characters at 
current j and before i. 

• If x[i] = y[j], then we have edit distance of character before i and j. 

• If x[i] ≠ y[j], then we substitute y[j] for x[i]. 1 plus above.
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EDIT DISTANCE

• Base cases 

• E(i, 0) = i, E(0, j) = j 

• Time complexity: O(nm) 

• Space complexity: O(nm)
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EDIT DISTANCE

• If stuck, try drawing a 2D matrix. 

• Number of arguments in subproblem definition determines 
dimension of matrix.
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KNAPSACK WITH REPETITION

• Problem 

• Given items with values and weights, find the highest value items 
such that total weight is at most W. Can re-use items (multiset). 

• Subproblem 

• At some point, you have a knapsack of items and weight. 

• K(w) as best value knapsack with weight w. 

• Need solutions to K(w’) for w’ < w. 

• Answer at K(W)
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KNAPSACK WITH REPETITION

• Recurrence Formula 

• K(w) = maxi ( K(w - wi)+ vi ) for w - wi ≥ 0 

• Look at item i. If we can still fit in bag, put it in to see if can get 
better value for weight w with value of this item. 

• Base Case 

• K(0) = 0 

• Time complexity: O(nW) 

• Space complexity: O(W)
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KNAPSACK WITHOUT REPETITION

• Problem 

• Given items with values and weights, find the highest value items 
such that total weight is at most W. Cannot re-use items (subset). 

• Subproblem 

• At some point, you have a knapsack of items and weight. 

• But lets say we have only look at items 1..i out of n items. 

• K(w, i) as best value knapsacks with weight w having only 
considered items 1..i. 

• Find K(W, n).
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KNAPSACK WITHOUT REPETITION

• Recurrence Relation 

• Look at item i. Either we add it to our bag (if it fits) or we don’t. 

• K(w, i) = max ( K(w - wi, i - 1) + vi, K(w, i - 1) ) 

• Typical tree recursion choice at each step. 

• Base Case 

• K(0, 0) = 0 

• Time Complexity: O(nW) 

• Space Complexity: O(nW)
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KNAPSACK TIME COMPLEXITY

• Knapsack runtime: O(nW). 

• Length of an array is the determining factor for most inputs. 

• Processors can handle those 4-8 byte data types easily. 

• Adding one more elements adds 4-8 bytes. 

• In knapsack, I can easily have you find best value bag with weight that is very 
large (e.x. 1,000,000,000). 

• W is represented as binary. Add 1 more bit to W, double the running time. 

• Looking at the “size” of input (what number is W?), we have polynomial. 

• But when I look at the length of input (number of bits in W), we have 
exponential.


