CS 170 DISCUSSION 9

LINEAR PROGRAM AND DUALITY

Raymond Chan <u>raychan3.github.io/cs170/fa17.html</u> UC Berkeley Fall 17

- Decision Variables
 - Things you have control over.
- Linear Objective Function
 - Optimize with respect to decision variables. Maximize or minimize.
- Constraints
 - Inequality or Equality
 - Restrictions for decision variables.

• General form of linear program.

• Turn ≥ into ≤ by multiplying by -1

- $g(x) \ge b \longrightarrow -g(x) \le -b$
- Turn an equality into two inequalities
 - g(x) = b
 - $g(x) \le b$ and $g(x) \ge b$
 - \longrightarrow g(x) \leq b and $-g(x) \leq$ -b
- Can also move b to LHS.

 $max x_{1} + 6x_{2}$ s.t. $x_{1} \le 200$ $x_{2} \le 300$ $x_{1} + x_{2} \le 400$ $x_{1}, x_{2} \ge 0$

 $\max x_{1} + 6_{2}$ s.t. $x_{1} - 200 \le 0$ $x_{2} - 300 \le 0$ $x_{1} + x_{2} - 400 \le 0$ $x_{1}, x_{2} \ge 0$

0	÷١	0	0	r	1	2	ri	2	n	tc		
U	u	1	C		V	a		a	11	LS	•	

- Going between max and min by multiplying by -1 to objective function.
- Inequalities can turned into equalities by introducing slack variable.
 - $x_1 + x_2 \leq b$
 - $x_1 + x_2 + s = b$ and $s \ge 0$
- Decision variable x has no sign restrictions.
 - Add x⁺ and x⁻ that corresponds to positive and negative of decision variable x.
 - x⁺, x⁻ ≥ 0
 - Replace x with $x^+ x^-$ in LP.

 $max x_{1} + 6x_{2}$ s.t. $x_{1} \le 200$ $x_{2} \le 300$ $x_{1} + x_{2} \le 400$ $x_{1}, x_{2} \ge 0$

 $max x_{1} + 6_{2}$ s.t. $x_{1} - 200 \le 0$ $x_{2} - 300 \le 0$ $x_{1} + x_{2} - 400 \le 0$ $x_{1}, x_{2} \ge 0$

Raymond Chan, UC Berkeley Fall 2017

$max x_1 + 6x_2$	min -x ₁ - 6x ₂
s.t.	s.t.
x ₁ ≤ 200	$x_1 + s_1 = 200$
x ₂ ≤ 300	$x_2 + s_2 = 300$
$x_1 + x_2 \le 400$	$x_1 + x_2 + s_3 = 400$
$x_1, x_2 \ge 0$	$x_1, x_2, s_1, s_2, s_3 \ge 0$

- Linear program is infeasible if constraints are too tight. Points cannot simultaneous satisfy all constraints.
 - $x \le 1$ and $x \ge 2$
- Feasible region is unbounded if we can achieve arbitrarily high (low for min problem) objective values.
 - max $x_1 + x_2$ subject to $x_1, x_2 \ge 0$

FEASIBLE REGION

- Feasible region consists of all points that satisfy all constraints.
- Contour lines are objective functions at different intercepts.
- Extreme points are where constraints intersect in feasible region.
- Optimal value where objective function is tangent to the extreme point of feasible region.
 - Otherwise the objective function crosses the feasible region.
 - Can achieve better value of objective function.
 - Feasible region forms convex set.

 $max x_{1} + 6x_{2}$ s.t. $x_{1} \le 200$ $x_{2} \le 300$ $x_{1} + x_{2} \le 400$ $x_{1}, x_{2} \ge 0$

- At optimally, constraints are considered binding if there is no slack.
- LHS = RHS
- Constraints that optimal points lie on.
- From previous page, binding constraints are
 - $x_2 \le 300$
 - $x_1 + x_2 \le 400$

- Suppose we have maximization primal LP with optimal value z*
- How do the constraints affect z*?
- Suppose we have upper bound of optimal value of LP z_u , $z^* \leq z_u$
- We can minimize z_u until $z^* = z_u$
- Smallest upper bound must be optimal solution to primal LP.
- Weight the constraints to obtain upper bound of objective value.
- Minimize the upper bound (dual LP).
- If primal LP's optimal value is the same as the dual LP's optimal value, we know that the optimal value is indeed the optimal.

Add multipliers y₁, y₂, y₃ for the constraints (not including nonnegativity)

 $\begin{array}{l} \max x_{1}+6x_{2}\\ \text{s.t.}\\ (y_{1}) \ x_{1} \leq 200 \ (y_{1})\\ (y_{2}) \ x_{2} \leq 300 \ (y_{2})\\ (y_{3}) \ x_{1}+x_{2} \leq 400 \ (y_{3})\\ x_{1} \ , \ x_{2} \geq 0 \end{array}$

Suppose $[y_1 y_2 y_3] = [1, 6, 0]$

 $x_1 + 6x_2 \le 2000$

We have an upper bound.

Obtaining linear combination of multipliers and constraints

 $y_1x_1 + y_2x_2 + y_3(x_1 + x_2) \le 200y_1 + 300y_2 + 400y_3$

LHS is our upper bound of optimal value. Rearranging...

 $x_1(y_1 + y_3) + x_2(y_2 + y_3) \le 200y_1 + 300y_2 + 400y_3$

To have an upper bound of optimal value, RHS $y_1 + y_3 = 1$ needs to be objective function $y_2 + y_3 = 6$

We can relax the constraints to be \geq as we minimizing over y_i. Can't be negative because that will give us a trivial optimal of 0. max $x_1 + 6x_2$ s.t. $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

 $y_1 + y_3 \ge 1$

 $y_2 + y_3 \ge 6$

Minimize RHS subject to constraints. $\max x_1 + 6x_2$ $\min 200y_1 + 300y_2 + 400y_3$ s.t.s.t. $x_1 \le 200$ $y_1 + y_3 \ge 1$ $x_2 \le 300$ $y_2 + y_3 \ge 6$ $x_1 + x_2 \le 400$ $y_1, y_2, y_3 \ge 0$ $x_1, x_2 \ge 0$ Nonnegativity constraints are added to not change sign $\max x_1 + 6x_2$

of primal LP constraints. If we have $y_2 < 0$, then inequality sign of constraint 2 in primal LP gets flipped. $\max x_{1} + 6x_{2}$ s.t. $(y_{1}) x_{1} \le 200 (y_{1})$ $(y_{2}) x_{2} \le 300 (y_{2})$ $(y_{3}) x_{1} + x_{2} \le 400 (y_{3})$ $x_{1}, x_{2} \ge 0$

If we turn constraint 2 into equality, dual becomes

min 200y₁ + 300y₂ + 400y₃ s.t.

> $y_1 + y_3 \ge 1$ $y_2 + y_3 \ge 6$ $y_1, y_3 \ge 0$

No nonnegativity for y_2 .

max $x_1 + 6x_2$ s.t. $x_1 \le 200$ $x_2 = 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

 $\max x_{1} + 6x_{2}$ s.t. $(y_{1}) x_{1} \leq 200 (y_{1})$ $(y_{2}) x_{2} = 300 (y_{2})$ $(y_{3}) x_{1} + x_{2} \leq 400 (y_{3})$ $x_{1}, x_{2} \geq 0$

$$\max \begin{bmatrix} 1 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

s.t.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 200 \\ 300 \\ 400 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 $\min \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 200\\ 300\\ 400 \end{bmatrix}$ s.t. $\begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & 1\\ 1 & 1 \end{bmatrix} \ge \begin{bmatrix} 1 & 6 \end{bmatrix}$ $\begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \ge \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

SOLVING LINEAR PROGRAMS

- 1. Graph feasible regions and find tangency between objective function and extreme points.
- 2. Find extreme points by intersecting constraints. Try extreme points in objective function.
- 3. Solve the dual LP. Plug in y_i multipliers and objective value into primal LP and solve for unknowns (x_i) using algebra.