CS 170 DISCUSSION 11

ZERO-SUM GAMES

Raymond Chan raychan3.github.io/cs170/fa17.html
UC Berkeley Fall 17

- Two players play a game.
- To maximize each's own score, need to minimize other player's score.
- Each player has a set of actions.
 - Note that they need not have the same number of actions (i.e. player A has 3 actions while player B has 2 actions).
- Each player's action will add x points to a player's score and subtract x points from a player's score.
 - Points are with respective to one player.

- If player A always makes the same move (pure strategy), then player B will optimize his/her strategy against that move.
- Thus both players want to vary their actions with respective to some probability distribution (mix strategy).
- Want to find the best probability distribution to maximize own score (or minimize opponent score).
- User payoff matrix.

Column player

Payoffs with respective to row player

Row player

	C ₁	C ₂
R ₁	3	-1
R ₁	-2	1

• Let x_1 , x_2 by probability that row player chooses actions R_1 , R_2 respectively.

•	Let y ₁ , y ₂ by probability that row player chooses
	actions C ₁ , C ₂ respectively.

•	Suppose row announces $\mathbf{x} = (x_1, x_2)$, column has pure
	strategies of $y = (1, 0)$ or $(0, 1)$ and will minimize the
	expected score (row player payoffs).

Column can give row score of either

•
$$3x_1 - 2x_2$$

•
$$-x_1 + x_2$$

	C ₁	C ₂
R ₁	3	-1
R ₁	-2	1

• Row objective to max (min $\{3x_1 - 2x_2, -x_1 + x_2\}$)

•	Let z =	= min {	$3x_1 -$	2x2,	-X1	$+ x_2$	}
---	---------	---------	----------	------	-----	---------	---

•	zis	upper	bounded	by	equations.
---	-----	-------	---------	----	------------

- Smaller value will be binding.
- By upper bounded z, we effectively choose z to be the minimum of the two.

•
$$z \le 3x_1 - 2x_2$$

•
$$z \le -x_1 + x_2$$

z is the outcome of Column's best response to x

	C ₁	C ₂
R ₁	3	-1
R ₁	-2	1

- Following LP for Row player
- Ensures x is a proper probability distribution with last equality and nonnegativitiy constraints.

	C ₁	C ₂
R ₁	3	-1
R ₁	-2	1

		max	z	
$-3x_1$	+	$2x_2 +$	z	≤ 0
x_1	_	$x_2 +$	z	≤ 0
x_1	+	x_2		= 1
		$x_1,$	x_2	≥ 0

- Similar logic from column's perspective. But we want to minimize because payoffs are for row.
- Column choose $y = (y_1, y_2)$ that minimizes the best outcome that Row can give him/her.

	C ₁	C ₂
R ₁	3	-1
R ₁	-2	1

• min
$$(max { 3y_1 - y_2, -2y_1 + y_2 })$$

• The following LPs are duals of each other. (Try the math).

	C ₁	C ₂
R ₁	3	
R ₁	-2	1

- They have the same optimal solution and optimal value V.
- No matter who declares his/her mixed strategy first, they will end up with the same optimal score, if both play optimally.

- The duality can be generalized to arbitrary games.
- There exists optimal strategies for both players and achieve the same value.

	C ₁	C ₂
R ₁	3	-1
R ₁	-2	1

In game theory, it's called the min-max theorem.

$$\max_{\mathbf{x}} \min_{\mathbf{y}} \sum_{i,j} G_{ij} x_i y_j = \min_{\mathbf{y}} \max_{\mathbf{x}} \sum_{i,j} G_{ij} x_i y_j.$$