
CS 170 
DISCUSSION 12
SEARCH PROBLEMS AND INTRACTABILITY 

Raymond Chan 
raychan3.github.io/cs170/fa17.html 

UC Berkeley Fall 17

http://raychan3.github.io/cs170/fa17.html


Raymond Chan, UC Berkeley Fall 2017

PROBLEMS

• Decision problem: Given an input, determine if there exists some 
solution of size at most b that would satisfy some constraints. 
(True or False) 

• Search problem: Given an input, find a solution of size at most b 
that satisfy some constraints. (outputs instance of the problem) 

• Optimization problem: Given an input, optimize over some 
objective and find the solution satisfying some constraints. (find 
“best” instance)



Raymond Chan, UC Berkeley Fall 2017

NP SEARCH PROBLEMS

• Instances are some confirmation of a problem. 

• Ex. Traveling salesman instances are a configuration of graph with 
edge weights. 

• Search Problems when talking about NP-Completeness (more 
later): 

• Given an instance I and a proposed solution S, we can check 
whether S is a solution to I in polynomial time with respect to 
the size of I.



Raymond Chan, UC Berkeley Fall 2017

NP SEARCH PROBLEMS

• Optimizations are also search problems. 

• Given you have some “optimal” solution, we can tell whether it is 
a valid solution to the instance via the “solution verifier” 
algorithm. 

• Use binary search to ensure that this is the optimal solution.



Raymond Chan, UC Berkeley Fall 2017

P VS NP

• P: Contains the set of all problems that can be solved (and thus 
verified) in polynomial time. 

• NP: Set of all problems that can be verified in polynomial time. 

• NP-complete: A problem to which all others problems in NP 
reduce. 

• Remember reductions A —> B 

• B is NP-complete if A —> B for all A in NP.



Raymond Chan, UC Berkeley Fall 2017

P VS NP

• NP-Hard: at least as hard as the hardest problem in NP. 

• If P = NP, then we should be able to solve all these hard problems 
such as traveling salesman in polynomial time.



Raymond Chan, UC Berkeley Fall 2017

REDUCTIONS

• Preprocess instance of A to be an instance of B. 

• Solve B. 

• If solution exists, postprocess solution of problem B instance to be solution of original 
problem A instance. 

• To proof valid reduction, need to proof the following: 

• If there is a solution to f(I), then there is a solution I. 

• If there is no solution to f(I), then there is no solution to I.



Raymond Chan, UC Berkeley Fall 2017

REDUCTIONS

• To prove that a problem B is in a complexity class, need to reduce 
a problem A in that desired complexity class to B. 

• A —> B 

• B is at least as hard as A. 

• This does not say anything about A. 

• If I can solve A with best runtime exponential and I can solve A 
by solving B, then I must have to solve B in exponential time. If I 
can solve B in polynomial time, then either A has a better 
runtime or it is not a valid reduction.



Raymond Chan, UC Berkeley Fall 2017

PROVING NP-COMPLETENESS

• Show problem A is NP-Complete by: 

• Prove that it is in NP. 

• Show that there is a polynomial time verifier. 

• Prove that it is NP-Hard 

• Reduce a NP-Hard problem to the A. 

• Not all NP-Hard problems are NP-Complete, but all NP-
Complete problems are NP-Hard 

• The reduction should take polynomial time.



Raymond Chan, UC Berkeley Fall 2017

CERTAIN PROBLEMS

• Not all NP-Hard problems reduce NP-Complete. 

• NP-Complete is a subset of NP-Hard. 

• Halting problem (whether program will finishing running or 
continue to run forever) is NP-Hard but not NP-Complete. 

• Factoring, finding all prime factors of a given integer, is in NP but 
not NP-Complete. 

• NP stands for Nondeterministic Polynomial time. 

• Can be solved in polynomial time using non-deterministic Turing 
Machine

https://en.wikipedia.org/wiki/Non-deterministic_Turing_machine
https://en.wikipedia.org/wiki/Non-deterministic_Turing_machine

