CS 61A
Discussion 2

Announcements

 Project 1 Hog due tonight

e tinyurl.com/61a-unstuck

http://tinyurl.com/61a-unstuck
http://csmscheduler.herokuapp.com

Environment Diagrams

* Environment diagrams allow us to keep track of variables that
have been defined and the values they are bound to.

e Assignment Statements

Assignment Statements

* Evaluate the expression on the right hand side of the = sign.

* Look up variable names in the current frame. If it does not
exist, look up in the parent frame.

Assignment Statements

* Write the variable name and the expression value in the current
frame.

e |f the expression is a function, use an arrow.

Global frame func square(x) [parent=G
square(x): x |5

return x**2
square

=

square

Def Statements

* Write the function name in the frame and point it to the function
object.

* Function object contains the function signature and the parent

Def Statements

* Function signature contains the function’s intrinsic name and
the formal parameters.

X =5
def square(x):
return x**2

Global frame func square(x) [parent=Global]
X i{////////;y
square

Call Expressions

* After evaluating operator and all the operands, we apply the
arguments to the function to make a function call.

 Draw a new frame with a unigque frame index, the function’s
intrinsic name, and the parent frame..

Call Expressions

e Remember to denote the return value. If a function does not
return anything, the return value is by default None.

* |f we are assigning a variable to a call expression, assign the
return value to the variable in the frame of the call expression.

Global frame
square(x) :

return x**2

y |5
square
z 25

square(y)

fl: square [parent=Global]
X |5

Return
value

| ambda Functions

* |[ambda <parameters>: <body>

* There can be multiple parameters delimited by commas.

 |ambda x,y, z: <body>

| ambda Functions

 Lambda functions cannot be accessed if it is not assigned to
variables either by

* using an explicit assignment statement or

* passing the lambda function into another function’s argument.

square = lambda x: x * x Global frame
def f(x):
square

def g(y, z): func f(x) [parent=Global]
return x(y, z) f '//,’—__>

return g func A(a, b) <line 7> [parent=Global]
fl: f [parent=Global]

func A(x) <line 1> [parent=Global]

f(lambda a, b: a + b) y func g(y, z) [parent=fl]

g

Return
value

i1

Function Call vs. Function

» Variables can be assigned to the return value of a function call or the
function object itself.

« Remember that variables are assigned to whatever the result of evaluating
the right hand side is pointing at.

Global frame func A(x)

square
four 4
f

nine 9

square = lambda x: X * X
four = square(2)

f = square

nine = f(3)

fl: A <line 1> [parent=Global]
X |2

f2: A <line 1> [parent=Global]
X |3

Return
value

Recursion

A recursive function is a function that calls itself.

* Three common steps

* Figure our your base case(s

Recursion

 Base cases are there to stop the recursion.

* No base case —> continue making recursive calls forever

Recursion

 Find a smaller problem tor the recursive call.

* Make sure the problem is getting smaller toward the base
case.

* (Call the recursive function with this smaller argument.

Recursion

* Take the leap of faith and trust that your recursive function is
correct on the smaller argument.

Knowing that the recursive call returns what you want, how can
you solve the bigger problem?

Recursion

factorial

Recursion

factorial

5 lacienal

Recursion

factorial

5 lacienal

4 * factorial

Recursion

factorial

5 lacienal

4 * factoria

Recursion

factorial

5 lacienal

4 * factoria

Recursion

factorial

5 lacienal

4 * factoria

Recursion

factorial

5 lacienal

4 * factoria

Recursion

factorial

*

factorial

4 * factoria

Recursion

factorial

*

factorial

4 * factoria —— 420

Recursion

factorial

*

factorial — 5% 24

4 * factoria —— 420

Recursion

factorial — 120

*

factorial — 5% 24

4 * factoria —— 420

Tree Recursion

e Recursive functions that make more than one recursive call in
ItS recursive case.

 Example: fibonacci sequence

Tree Recursion

Tree Recursion

Tree Recursion

Tree Recursion

Tree Recursion

Tree Recursion

Tree Recursion

Worksheet

e 2.1 Cool recursion questions!

Recap

* Environment diagrams allow us to keep track of a variables
and their values.

* Recursion functions call themselves.

