
CS 61A
Discussion 5

Mutation and Trees

Raymond Chan
Discussion 121
UC Berkeley

1

Agenda
• Announcements

• Linked Lists

• Trees

• Mutation

• Dictionaries

• Quiz (not after a midterm)

2

Announcements

• HW 3 due Friday 2/26

• Maps Project due Tuesday 3/1

• CSM Adjunct Sections sign-ups available again

• http://csmscheduler.herokuapp.com/

3

http://csmscheduler.herokuapp.com/

Linked Lists

• A type of sequence that connects multiple links.

• Each link has first element and a rest element.

• The last link has “empty” as the rest element.

• Think of connected chains with each chain containing
information.

4

Linked Lists

5

Python List

Linked List ADT

To form this linked list, use the constructor:
link(1, link(2, link(3, link(4, empty))))

Linked Lists

6

• The first element can also be another linked list.

1 4 5 “empty”

“empty”2 3

Linked Lists

• For each link box, you need to call the link constructor

• Recursive data structure

• Selectors first(s) obtains the first element and rest(s) obtains
the rest of the elements of the linked list s

• rest(s) always returns a linked list or an empty linked list

7

Linked Lists
• It is very natural to use recursion for linked lists as we can split

it up to first(s) and rest(s)

8

1 3 42

1 3 42
first(s)

s

rest(s)

Trees
• What if a linked list’s rest can contains more than 1 link?

9

Trees
• What if a linked list’s rest can contains more than 1 link?

10

1 3

4

2s

5

6

7

Trees

11

1

5 2 4

3 6 7

t
label(t) or root(t)

Trees

12

1

5 2 4

3 6 7

t

leaf nodes

Trees

13

1

5 2 4

3 6 7

t

t’s child nodes

Trees

14

1

5 2 4

3 6 7

tTrees are also a
recursive data
structure

The children of
the root are
smaller subtrees

Trees

15

1

5 2 4

3 6 7

t1 is parent node of
nodes 5, 2, and 4

Trees

16

1

5 2 4

3 6 7

tthe root node
has no parent

Trees

17

1

5 2 4

3 6 7

t

leaves do not have any children

Trees

18

1

5 2 4

3 6 7

t

all other nodes
have a parent
and at least 1
child if the size of
the tree is > 1

Trees

19

1

5 2 4

3 6 7

t

each node can
only have one
parent

Trees

20

• The depth of a node is how far it is away from the root.

• Or count the number of edges from the root to the node.

Trees

21

• The depth of a node is how far it is away from the root.

• Or count the number of edges from the root to the node.

1

5 2 4

3 6 7

t
depth 0

depth 1

depth 2

Trees

22

• The height of a tree is the depth of the lowest leaves.

Trees

23

• The height of a tree is the depth of the lowest leaves.

1

5 2 4

3 6 7

t
depth 0

depth 1

depth 2

height 2

Trees

24

• Our tree(label, children=[]) constructor is implemented via
Python Lists

t = tree(1,
[tree(5),
tree(2,
[tree(3)]),

tree(4,
[tree(6),
tree(7)])

])

1

5 2 4

3 6 7

t

Trees

25

• children(t) returns a sequence of subtrees

• We usually need to iterate over the children and make
recursive calls to each child

Trees

26

• For tree questions, we typically do something with the label or
root of the tree and then for each of the tree’s children, make
the recursive call.

• The smaller problems are the tree’s subtrees, which can be
accessed via the tree’s children.

Discussion Worksheet

27

• Section 1.1: 1 and 3

Mutation
• When we define functions, we created function objects in

environment diagrams.

• When we create lists, we create list objects.

• We can change the elements of list objects after we’ve created it.

28

Mutation
• When we define functions, we created function objects in

environment diagrams.

• When we create lists, we create list objects.

• We can change the elements of list objects after we’ve created it.

29

>>> a = [1, 2, 3]
>>> a

Mutation
• When we define functions, we created function objects in

environment diagrams.

• When we create lists, we create list objects.

• We can change the elements of list objects after we’ve created it.

30

>>> a = [1, 2, 3]
>>> a
[1, 2, 3]

Mutation
• When we define functions, we created function objects in

environment diagrams.

• When we create lists, we create list objects.

• We can change the elements of list objects after we’ve created it.

31

>>> a = [1, 2, 3]
>>> a
[1, 2, 3]
>>> a[2] = 100
>>> a

Mutation
• When we define functions, we created function objects in

environment diagrams.

• When we create lists, we create list objects.

• We can change the elements of list objects after we’ve created it.

32

>>> a = [1, 2, 3]
>>> a
[1, 2, 3]
>>> a[2] = 100
>>> a
[1, 2, 100]

Mutation
• If I assign this variable a to variable b, b receives the

reference.

• a and b is the same list as they are both referencing the same
list object

• a, b, and c have the same elements, but a and c are not the
same list

33

Mutation
• When we assign a list to a variable, the variable references the

list object.

• If I pass in a variable that references a list to a function
argument, I am passing in the reference.

• This is similar to passing in a function object.

34

Mutation
• Within the body of func, lst’s values are changed. Notice that

a’s values are also changed because lst references the same
list a is point to.

35

Mutation
• Lists and dictionaries are mutable.

• Tuples and strings are immutable. Once they are created, they
cannot be changed.

36

Mutation
• append(x) adds x to the end of the list

37

>>> a = [1, 2, 3]
>>> a.append(4)
>>> a
[1, 2, 3, 4]
>>> a.append([5, 6])
>>> a
[1, 2, 3, 4, [5, 6]]
>>> len(a)
5

Mutation
• A list can append itself.

38

>>> a = [1, 2, 3, 4]
>>> a.append(a)
>>> a
[1, 2, 3, 4, […]]
>>> a[4][3]
4
>>> a[4][4][4][2]
3

Mutation
• += for lists mutates the original list

• += is different than a = a + [1] because this re-assigns the
original list

39

>>> a = [1, 2, 3, 4]
>>> b = a
>>> a.append(5)
>>> a
[1, 2, 3, 4, 5]
>>> b
[1, 2, 3, 4, 5]

>>> a = a + [6]
>>> a
[1, 2, 3, 4, 5, 6]
>>> b
[1, 2, 3, 4, 5]

Mutation
• lst1 += [lst2] -> lst1 appends each element of lst2

• which leads us to…

40

>>> a = [1, 2, 3, 4]
>>> b = a
>>> a.append(5)
>>> a
[1, 2, 3, 4, 5]
>>> b
[1, 2, 3, 4, 5]

>>> a = a + [6]
>>> a
[1, 2, 3, 4, 5, 6]
>>> b
[1, 2, 3, 4, 5]

Mutation
• extend(seq) appends each element of seq to list.

41

>>> a = [1, 2]
>>> b = [3, 4]
>>> a.extend(b)
>>> a
[1, 2, 3, 4]
>>> b
[3, 4]

Mutation
• insert(i, x) inserts x at index i by adding a new element and not

replace the original element at i

42

>>> a = [1, 2, 3]
>>> a.insert(1, 55)
>>> a
[1, 55, 2, 3]

Mutation
• remove(x) removes the first time we see x in a list, otherwise

errors

43

>>> a = [1, 2, 3, 2, 5, 1]
>>> a.remove(2)
>>> a
[1, 3, 2, 5, 1]

Mutation
• pop(i) returns and removes the element at index i. By default, i

is the last element

44

>>> a = [1, 2, 3, 2, 4, 1]
>>> a.pop()
1
>>> a.pop(3)
2
>>> a
[1, 2, 3, 4]

Mutation Q1

45

http://tinyurl.com/mutation-q1

http://tinyurl.com/mutation-q1

Mutation Questions

46

Q2 on page 9

Dictionaries

• Dictionaries map keys to values.

• Python dictionaries are unordered.

• We can obtain a key’s mapped value by indexing into the
dictionary via the key.

• We can add key-value pairs anytime and can also replace a
key’s value with something else.

47

Dictionaries

• A dictionary key can be any immutable value.

• If we try to place an entry with a mutable key (i.e. list), we will
get an unhashable type error.

• We can check whether a dictionary contains a key with in.

• However, to check if a dictionary contains a value, need to
iterate through the dictionary

48

Dictionaries

49

>>> numerals = {"I":1, "II":2, “III":3}
>>> numerals[“II"]
2
>>> numerals["IV"] = 4
>>> numerals
{"I":1, "II":2, "III":3, “IV":4}
>>> numerals[“I"] = 100
>>> numerals
{"I":100, "II":2, "III":3, “IV”:4}
>>> "I" in numerals
True
>>> 100 in numerals
False

Dictionaries
• We can iterate over a dictionary’s keys.

50

Dictionaries
• We can iterate over a dictionary’s keys.

51

for key in dictionary

Dictionaries
• We can iterate over a dictionary’s keys.

52

for key in dictionary

for key in dictionary.keys()

Dictionaries
• We can iterate over a dictionary’s keys.

53

• We can iterate over a dictionary’s values.

for key in dictionary

for key in dictionary.keys()

Dictionaries
• We can iterate over a dictionary’s keys.

54

• We can iterate over a dictionary’s values.

for key in dictionary

for key in dictionary.keys()

for value in dictionary.values()

Dictionaries
• We can iterate over a dictionary’s keys.

55

• We can iterate over a dictionary’s values.

• We can iterate over a dictionary’s keys and values at the same time.

for key in dictionary

for key in dictionary.keys()

for value in dictionary.values()

Dictionaries
• We can iterate over a dictionary’s keys.

56

• We can iterate over a dictionary’s values.

• We can iterate over a dictionary’s keys and values at the same time.

for key in dictionary

for key in dictionary.keys()

for value in dictionary.values()

for key, value in dictionary.items()

Dictionaries
• We can delete a dictionary’s key-value pair.

57

Dictionaries
• We can delete a dictionary’s key-value pair.

58

>>> a = {"a":1, "b":2, "c":3, "d":4}
>>> del a["a"]
>>> a
{"b":2, "c":3, "d":4}

Dictionaries
• We can delete a dictionary’s key-value pair.

59

• We can delete a key and return its value.

>>> a = {"a":1, "b":2, "c":3, "d":4}
>>> del a["a"]
>>> a
{"b":2, "c":3, "d":4}

Dictionaries
• We can delete a dictionary’s key-value pair.

60

• We can delete a key and return its value.

>>> a = {"a":1, "b":2, "c":3, "d":4}
>>> del a["a"]
>>> a
{"b":2, "c":3, "d":4}

>>> a.pop(“d")
4
>>> a
{"b":2, "c":3}

Dictionaries Questions

• Q2, Q3, and Q4

61

• Linked lists chains of link elements where the first is some
information and the rest is another linked list.

• Trees are recursive data structures that have root values and
maybe other trees as their children.

• Dictionaries contain key value pairs to store information.

• Lists and dictionaries are mutable. Tuples and strings are
immutable.

• Python list objects are references with pointers. When calling
functions that takes a list, we pass in the reference (or pointer) and
not create a new list.

Recap

62

