
CS 61A
Discussion 7

Orders of Growth

Raymond Chan
Discussion 121
UC Berkeley

1

Agenda

• Quiz

• Announcements

• Orders of Growth

2

Quiz - WWPP

3

def f(l, n):
 s = '< '
 while n > 0 and l != Link.empty:
 s += str(l.first) + ' '
 l = l.rest
 n -= 1
 print(s + '>')

link = Link(1, Link(2, Link(3, Link(4, Link(5, Link(6))))))
linkA = link.rest
linkB = link.rest.rest
linkC = link.rest.rest.rest.rest

link.rest.rest, linkB.rest = linkB.rest, link.rest.rest
link.rest.rest.rest = linkC.rest.rest
linkC.rest.rest = linkC
link.rest = linkC.rest
linkC.rest = link
f(link, 5)
f(linkA, 5)
f(linkB, 5)
f(linkC, 5)

Credit goes to Kristin

Quiz Solutions

4

< 1 6 5 1 6 >
< 2 4 >
< 3 3 3 3 3 >
< 5 1 6 5 1>

• The function f prints out the first 5
elements of a linked list.

• Try drawing out the linked list.

Announcements

• HW 5 due Wednesday 3/16

• Ants Project due Thursday 3/17

• Midterm 2 Wednesday 3/30 (after spring break)

• Submit Midterm 2 Alternative Petition by 3/18

5

Orders of Growth

• When we have really large inputs, we need to worry about
efficiency.

• We measure efficiency by runtime (Time complexity).

• How long does the functions take to run in terms of the size of
the input?

• If the size of the input grows, how does the runtime change?

6

Orders of Growth

• We use Big-O notation means an upper bound on time
complexity.

• O(n2) means that the function’s runtime is no larger than
quadratic of the input.

7

Orders of Growth

8

def square(n):
return n * n

1 primitive operation *

Orders of Growth

9

def square(n):
return n * n

1 primitive operation *

input function call number of
operation

number of operations
1 square(1) 1*1 1
2 square(2) 2*2 1
… … … …

100 square(100) 100*100 1
… … … …
n square(n) n*n 1

Orders of Growth

10

def square(n):
return n * n

1 primitive operation *

input function call return value number of operations
1 square(1) 1*1 1
2 square(2) 2*2 1
… … … …

100 square(100) 100*100 1
… … … …
n square(n) n*n 1

O(1)

Orders of Growth

11

def factorial(n):
if n == 0:
return 1

return n * factorial(n - 1)

Each recursive call has
a constant amount operations.

Orders of Growth

12

def factorial(n):
if n == 0:
return 1

return n * factorial(n - 1)

Each recursive call has
a constant amount operations.

input function call return value number of operations
1 factorial(1) 1*1 1
2 factorial(2) 2*1*1 2
… … … …

100 factorial(100) 100*99*…*1*1 100
… … … …
n factorial(n) n*(n-1)*…*1*1 n

Orders of Growth

13

def factorial(n):
if n == 0:
return 1

return n * factorial(n - 1)

Each recursive call has
a constant amount operations.

input function call return value number of operations
1 factorial(1) 1*1 1
2 factorial(2) 2*1*1 2
… … … …

100 factorial(100) 100*99*…*1*1 100
… … … …
n factorial(n) n*(n-1)*…*1*1 n

O(n)

Orders of Growth
• O(1) - constant time; same time regardless of input size.

• O(log n) - logarithmic time; e.g. usually dividing the problem
down by some factor.

• O(n) - linear time; e.g. usually 1 loop

• O(n2), O(n3), etc - polynomial time; e.g. nested loops

• O(2n) - exponential time; can change 2 to some other constant;
really horrible time complexity; e.g. tree recursion

14

Orders of Growth

• Constant time is the best and exponential is the worse.

• Any polynomial is worse than any logarithmic.

• Higher degree polynomial worse than lower degree.

15

Orders of Growth

• Since we care about the runtime when n gets infinitely large,
we can drop lower order terms and constants.

• O(2n3 + 6n + log(n)) = O(n3)

• Should always provide the tightest bound.

• Factorial is O(n2) and O(n). But the tightest bound is O(n).

16

Orders of Growth

• Count the number of iterations and/or recursive calls.

• Find the number of operations per iteration or recursive call.

17

• Orders of growth tells us how long the running time of the
function approach as n approach infinity.

• Constant is better than logarithmic, which is better than
polynomial, which is better than exponential.

• Lower polynomial is better than higher polynomial.

• Try drawing a call stack or tree to count the # of operations.

Recap

18

