
CS 61A
Discussion 8

Scheme

Raymond Chan
Discussion 121
UC Berkeley

1

Agenda

• Announcements

• Scheme

2

Announcements
• Quiz due Friday (check course website)

• Ants Project due tonight

• Lab 8 due tomorrow

• HW 5 due Wednesday 3/28

• Midterm 2 Wednesday 3/30

• Submit Midterm 2 Alternative Petition by tomorrow

3

Scheme
• Introducing this programming language because it is simple.

• http://scheme.cs61a.org/

• 4 main points:

• Everything is an expression.

• All functions are hidden lambdas.

• Everything is a symbol unless evaluated.

• Non symbols are values (no objects).

4

Primitives
• Atomic primitive expressions cannot be divided up and evaluate to

themselves.

• Numbers and booleans.

• The only false-y value in scheme is False (#f).

• Use nil instead of None.

5

Primitives
• Atomic primitive expressions cannot be divided up and evaluate to

themselves.

• Numbers and booleans.

• The only false-y value in scheme is False (#f).

• Use nil instead of None.

6

scm> 123
123
scm> 123.123
123.123

Primitives
• Atomic primitive expressions cannot be divided up and evaluate to

themselves.

• Numbers and booleans.

• The only false-y value in scheme is False (#f).

• Use nil instead of None.

7

scm> 123
123
scm> 123.123
123.123

scm> #t
True
scm> #f
False

Primitives
• Atomic primitive expressions cannot be divided up and evaluate to

themselves.

• Numbers and booleans.

• The only false-y value in scheme is False (#f).

• Use nil instead of None. Also can use ().

8

scm> 123
123
scm> 123.123
123.123

scm> #t
True
scm> #f
False

scm> nil
scm> ()

Prefix Notation
• Call expressions starts off with an operator that is followed by

zero or more operand subexpressions.

• Functions (procedures) are called with parenthesis.

• (<operator> <operand1> <operand2> …)

• Open parenthesis “(” always starts a function call.

• Spaces matter.

9

Prefix Notation
• (<operator> <operand1> <operand2> …)

• Operators can be symbols (+, *, …) or more complex
expressions.

• Evaluate the operator and then each of the operands.

• Apply the operator to those evaluated operands.

10

Prefix Notation
• (<operator> <operand1> <operand2> …)

• Operators can be symbols (+, *, …) or more complex
expressions.

• Evaluate the operator and then each of the operands.

• Apply the operator to those evaluated operands.

11

scm> (+ 4 5)
9

Prefix Notation
• Built-in functions:

• +, -, *, /

• >, <, >=, <=

• = Checks for number equality

• eq? Checks equality for everything else

• null? Checks if the expression is nil

12

Variables & Procedures
• define is a special form that defines variables and

procedures (functions).

• The equivalent of both assignment and def statements in
Python. (no a = 3 in Scheme)

• Define binds a value to a variable.

• When a variable is defined, define returns the variable name.

• When a function is defined, define returns the function name.

13

Variables & Procedures
• (define <variable name> <value>)

• (define (<function name> <parameters>) <function body>)

• <parameters> are split up by 1 space.

14

Variables & Procedures
• (define <variable name> <value>)

• (define (<function name> <parameters>) <function body>)

• <parameters> are split up by 1 space.

15

scm> (define a 3)
a
scm> a
3
scm> (define (foo x) x)
foo
scm> (foo 5)
5

Variables & Procedures
• (define <variable name> <value>)

• (define (<function name> <parameters>) <function body>)

• <parameters> are split up by 1 space.

16

scm> (define a 3)
a
scm> a
3
scm> (define (foo x) x)
foo
scm> (foo 5)
5

scm> (define (bar x y) (* x y))
bar
scm> (bar 4 5)
20

Symbols
• Any expression that is quoted is not evaluated. (Use single quote)

• They become symbols.

• Below, a is bound to the symbol of b

17

Symbols
• Any expression that is quoted is not evaluated. (Use single quote)

• They become symbols.

• Below, a is bound to the symbol of b

18

scm> (define b 3)
b
scm> (define a ‘b)
a
scm> a
b

Symbols
• Any expression that is quoted is not evaluated. (Use single quote)

• They become symbols.

• Below, a is bound to the symbol of b

19

scm> (define b 3)
b
scm> (define a ‘b)
a
scm> a
b

scm> (define c b)
c
scm> c
3

Special Forms
• Expressions that look like function calls but don’t follow the

rules of evolution are called special forms (ex. define).

• and, or, and not work the same as they would in Python.

• (if <condition> <then> <else>)

• To replicate Python’s if, elif, else, we need to nest if
expressions.

20

Special Forms
• Expressions that look like function calls but don’t follow the

rules of evolution are called special forms (ex. define).

• and, or, and not work the same as they would in Python.

• (if <condition> <then> <else>)

• To replicate Python’s if, elif, else, we need to nest if
expressions.

21

scm> (if (< 4 5) 1 2)
1

Lambdas & Define
• When a lambda expression is called, a new frame is created.

• Lookup for variables occurs in local frame before going to the
parent frame.

• ((lambda (<parameters>) <body>) <arguments>)

• (define (<func name> <parameters>) <expr>)

• (define <func name> (lambda (<parameters>) <expr>)

22

Lambdas & Define

23

scm> (define x 3)
x
scm> (define y 4)
y
scm> ((lambda (x y) (+ x y)) 6 7)
13

Lambdas & Define

24

scm> (define x 3)
x
scm> (define y 4)
y
scm> ((lambda (x y) (+ x y)) 6 7)
13

6 and 7 are passed in as arguments and bound to x and y
in the lambda’s local frame

Lambdas & Define

25

scm> (define square (lambda (x) (* x x)))
square
scm> (square 4)
16

Let

26

(let ((<symbol1> <expr1>)
…

(<symboln> <exprn>))
<body>)

• Let binds symbol to expressions locally and then runs the
body.

• Useful if you want to reuse a value multiple times.

Cond

27

(cond (<p1> <e1>)
 (<p2> <e2>)
 …
 (<pn> <en>)
 (else <else-expr>))

• Nested if statements are annoying.

• The cond forms checks each predicate expression pair.

• If the predicate is true, we evaluate the corresponding
expression. Otherwise we continue to check the next pair.

• The else expression is evaluated if no predicate is true.

Begin

28

• Begin is a special form that takes in subexpressions.

• It evaluates all subexpressions in order.

• The value of a begin form is the value of evaluating the last
subexpressions.

scm> (begin (factorial 4) (square 5))
25
scm> (begin (/ 1 0) (factorial 4))
Error

Lists
• The only data structure in scheme is a list.

• Caveat: They are linked lists!

• We call each “link” a pair with a first value and a rest value.

29

Lists
• Constructor: (cons 2 nil) -> (2)

• Obtain first element: (car (cons 2 nil)) -> 2

• Obtain second element: (cdr (cons 2 (cons 3 nil)) -> (3)

30

Lists
• Well formed lists are those where the second element is nil or

another linked list.

31

Lists
• Well formed lists are those where the second element is nil or

another linked list.

32

scm> (cons 1 (cons 2 (cons 3 nil)))
(1 2 3)
scm> nil

Lists
• Well formed lists are those where the second element is nil or

another linked list.

33

scm> (cons 1 (cons 2 (cons 3 nil)))
(1 2 3)
scm> nil
()

Lists

34

• Malformed list occurs when the second element is a value.

• A dot separates the first value and the second value.

Lists

35

• Malformed list occurs when the second element is a value.

• A dot separates the first value and the second value.

scm> (cons 1 2)
(1 . 2)

Lists

36

• Malformed list occurs when the second element is a value.

• A dot separates the first value and the second value.

scm> (cons 1 2)
(1 . 2)

Lists

37

• We can also construct well-formed lists with the list operator.

Lists

38

• We can also construct well-formed lists with the list operator.

scm> (list 1 2 3 4 5)
(1 2 3 4 5)

Lists

39

• We can also construct well-formed lists with the list operator.

• Or we can use the quote form.

scm> (list 1 2 3 4 5)
(1 2 3 4 5)

Lists

40

• We can also construct well-formed lists with the list operator.

• Or we can use the quote form.

scm> (list 1 2 3 4 5)
(1 2 3 4 5)

scm> ‘(1 2 3 4)
(1 2 3 4)
scm> ‘(1 . (2 3))
(1 2 3)
scm> ‘(define (foo x) x)
(define (foo x) x)

Lists

41

• We can also construct well-formed lists with the list operator.

• Or we can use the quote form.

scm> (list 1 2 3 4 5)
(1 2 3 4 5)

scm> ‘(1 2 3 4)
(1 2 3 4)
scm> ‘(1 . (2 3))
(1 2 3)
scm> ‘(define (foo x) x)
(define (foo x) x)

The dot here means that the second element is
another linked list, which makes it well-formed.

Lists

42

• Deep list occurs when the first element is another list!

Lists

43

• Deep list occurs when the first element is another list!

scm> (cons 1 (cons (cons 2 (cons 3 nil)) (cons 4 (cons 5 nil))))
(1 (2 3) 4 5)

Lists

44

• Deep list occurs when the first element is another list!

scm> (cons 1 (cons (cons 2 (cons 3 nil)) (cons 4 (cons 5 nil))))
(1 (2 3) 4 5)
scm> (car (cdr ‘(1 (2 3) 4 5)))
(2 3)
scm> (car (cdr (cdr ‘(1 (2 3) 4 5))))
4
scm> (car (cdr (car (cdr ‘(1 (2 3) 4 5)))))
3

Hints

45

• For list code writing questions, it may seem easier to use
iteration.

• We can turn recursion into iteration by defining a helper
function that has an additional parameter so-far.

• This parameter is the list we have built thus far in our recursive
calls.

• When we reach the base case, we can just return this so-far
list.

• Scheme is a functional programming language.

• We can define variables and procedures with define

• Symbols have values that can be obtained if you evaluate the
symbols.

• Scheme lists are linked lists.

Recap

46

