
CS 61A
Discussion 9

Tail Calls and Interpreters

Raymond Chan
Discussion 121
UC Berkeley

1

Agenda

• Announcements

• Tail Calls

• Interpreters

2

Announcements
• Homework 6 due Friday (4/8) (Homework party tonight)

• Quiz 2 due today (check course website)

• Lab 10 due Friday

• Scheme Project due 4/23 (Start early)

• Submit Midterm 2 Regrade Requests on Gradescope

• Maps Composition Revision due 4/15

3

Midterm 2
• Video Walkthrough

• https://youtu.be/0TkYl4jnFlk

4

https://youtu.be/0TkYl4jnFlk

Tail Calls
• Tail-optimization in scheme allow recursive functions that take

constant space.

• A Tail Call occurs if the function call is the last operation of
the current frame.

• With no operations after the function call, we don’t need to
lookup variables anymore in the current frame.

• Can use the current frame as the function’s new call frame.

• Can be a recursive call or a call to another function.

5

Tail Calls

• Factorial example; Not tail recursive

6

(define (fact n)
 (if (= n 0) 1
 (* n (fact (- n 1)))))

Tail Calls
• After (fact (- n 1)) returns, we multiply the return value by n.

• We need to remember n in each frame.

7

(define (fact n)
 (if (= n 0) 1
 (* n (fact (- n 1)))))

Tail Calls

• Tail Recursive .

8

(define (fact n)
 (define (fact-tail n result)
 (if (= n 0) result
 (fact-tail (- n 1) (* n result))))
 (fact-tail n 1))

Tail Calls
• After each call to fact-tail, there are no more operations.

• We do not need the current frame’s variables anymore.

9

(define (fact n)
 (define (fact-tail n result)
 (if (= n 0) result
 (fact-tail (- n 1) (* n result))))
 (fact-tail n 1))

Tail Calls
• result is the list that we are building in each frame.

• At the end, we can just return result.

10

(define (fact n)
 (define (fact-tail n result)
 (if (= n 0) result
 (fact-tail (- n 1) (* n result))))
 (fact-tail n 1))

Tail Calls
• We keep track of n and result by passing them on as

arguments to the recursive call.

• Use helper functions!

11

(define (fact n)
 (define (fact-tail n result)
 (if (= n 0) result
 (fact-tail (- n 1) (* n result))))
 (fact-tail n 1))

Tail Calls

• Closest thing to iteration in Scheme.

12

(define (fact n)
 (define (fact-tail n result)
 (if (= n 0) result
 (fact-tail (- n 1) (* n result))))
 (fact-tail n 1))

Tail Calls

• A function call is a tail call if it is in a tail context. This function
may or may not be tail-recursive.

• A tail-recursive function requires the recursive call to be the
last action, which implies it is in a tail context.

13

Tail Context

• Last sub-expr in the body of a lambda.

• Second or Third sub-expr in an if form (values that return).

• Any non-predicate sub-expr in a cond form.

• Last sub-expr in an and or an or form.

• Last sub-expr in a begin’s body.

14

Interpreters

• Programs that understand other programs.

• Use an underlying language to implement an interpreter that
can understand the implemented language.

• Read-Eval-Print-Loop (REPL).

15

Interpreters - REPL

• Read

• Lever turns input into “tokens.”

• Parser organizes “tokens” into data structures of the
underlying language.

• We use Pairs, which is a form of Linked List.

16

Interpreters - REPL
• Eval

• Mutual recursion between eval and apply.

• Eval: evaluates an expression according to the rules of the
language.

• Deals with expressions.

• Apply: applies the function to the argument values.

• May call eval to evaluate sub-expressions.

• Deals with Values

17

Interpreters - REPL
• Evaluation

• Primitive expressions evaluated directly.

• Call expressions

• Evaluate operator.

• Evaluate operands from left to right.

• Apply operator to the operands.

18

Interpreters - REPL

• Print displays result.

19

Recap

• Tail calls allow us to use constant space in the number of
frames.

• Tail calls require the last action to be a function call.

• Interpreters

• Read-Eval-Print-Loop

20

