
CS 61A
Discussion 10

Iterators, Generators, Streams

Raymond Chan
Discussion 121
UC Berkeley

1

Agenda
• Announcements

• Iterators

• Generators

• Streams

2

Announcements
• Homework 7 due Friday (4/15) (Homework party

tonight)

• Lab 11 due Friday

• Scheme Project due 4/23

• Submit Part 1 by Monday (4/18) for 1 EC

• Maps Composition Revision due 4/15

3

Iterators

• An iterator is an object that tracks the position in a sequence of
values.

• It returns elements one at a time.

• Can only go through the elements once.

4

Iterators

5

class Natruals():
 def __init__(self, end):
 self.current = 0
 self.end = end

 def __next__(self):
 if self.current > self.end:
 raise StopIteration
 result = self.current
 self.current += 1
 return result

def __iter__(self):
return self

Iterators
• __next__(self): checks for the next value in the sequence.

• If there are values left, it computes and returns the next
element.

• Keeps track of the current position/state.

• Raises a StopIteration exception to signal the end of the
sequence.

• Since each call can return different values, __next__ is a
non-pure function.

6

Iterators

• __iter__(self) always returns an iterator.

• An iterator is a class that has implemented both __next__ and
__iter__.

• The __iter__ of an iterator returns self.

7

Iterators

• Iterables are sequences that can be iterated over.

• Examples: lists, tuples, strings, dictionaries.

• Has an __iter__ method that returns a new iterator.

• Allow us to iterate over a sequence many times.

• Iterators don’t reset

8

Iterators

9

[1, 2, 3, 4, 5]

>>> lst = [1, 2, 3, 4, 5]
>>> iter_lst = iter(lst)

Iterators

10

[1, 2, 3, 4, 5]

>>> lst = [1, 2, 3, 4, 5]
>>> iter_lst = iter(lst)
>>> next(iter_lst)
1

Iterators

11

[1, 2, 3, 4, 5]

>>> lst = [1, 2, 3, 4, 5]
>>> iter_lst = iter(lst)
>>> next(iter_lst)
1
>>> next(iter_lst)
2

Iterators

12

[1, 2, 3, 4, 5]

>>> lst = [1, 2, 3, 4, 5]
>>> iter_lst = iter(lst)
>>> next(iter_lst)
1
>>> next(iter_lst)
2
>>> next(iter_lst)
3

Iterators

13

[1, 2, 3, 4, 5]

>>> lst = [1, 2, 3, 4, 5]
>>> iter_lst = iter(lst)
>>> next(iter_lst)
1
>>> next(iter_lst)
2
>>> next(iter_lst)
3

>>> next(iter_lst)
4

Iterators

14

[1, 2, 3, 4, 5]

>>> lst = [1, 2, 3, 4, 5]
>>> iter_lst = iter(lst)
>>> next(iter_lst)
1
>>> next(iter_lst)
2
>>> next(iter_lst)
3

>>> next(iter_lst)
4
>>> next(iter_lst)
5

Iterators

15

[1, 2, 3, 4, 5]

>>> lst = [1, 2, 3, 4, 5]
>>> iter_lst = iter(lst)
>>> next(iter_lst)
1
>>> next(iter_lst)
2
>>> next(iter_lst)
3

>>> next(iter_lst)
4
>>> next(iter_lst)
5
>>> next(iter_lst)
StopIteration Error

Iterators
• A for loop calls iter on the iterable and continuously calls next

on the iterator until a StopIteration Exception is caught.

16

for elem in <iterable>:
 ……….

Iterators

17

iterable iterator

__iter__(self) __iter__(self)

__next__(self

Generators
• A generator function uses a yield statement instead of return.

• It returns can generator function that can be is can be
iterated over.

• Each time we call next on the generator object, we executed
until yield.

• At yield, we return the statement and pauses frame.

• The next time we call next, we start from the line directly
beneath yield

18

Generators

19

def generate_naturals():
current = 0
while True:
yield current
current += 1

>>> gen = generate_natruals()
>>> gen
<generator object gen at …>

Generators

20

def generate_naturals():
current = 0
while True:
yield current
current += 1

>>> gen = generate_natruals()
>>> gen
<generator object gen at …>
>>> next(gen)
0

Generators

21

def generate_naturals():
current = 0
while True:
yield current
current += 1

>>> gen = generate_natruals()
>>> gen
<generator object gen at …>
>>> next(gen)
0
>>> next(gen)

Generators

22

def generate_naturals():
current = 0
while True:
yield current
current += 1

>>> gen = generate_natruals()
>>> gen
<generator object gen at …>
>>> next(gen)
0
>>> next(gen)

Generators

23

def generate_naturals():
current = 0
while True:
yield current
current += 1

>>> gen = generate_natruals()
>>> gen
<generator object gen at …>
>>> next(gen)
0
>>> next(gen)
1

Generators

• Since we can call next on generator objects, we can create
iterators with no __next__ method.

• The __iter__ method would have to return a generator
object.

24

Streams (Scheme)

• Iterators and generators are lazy and can potentially represent
infinite sequences.

• We only compute the next value when we ask for it.

• Scheme Lists cannot be infinite.

25

Streams

26

> (define (naturals n)
 (cons n (naturals (+ n 1)))
> Maximum Recursion Depth Reached

• The the second argument to cons is always evaluated.

Streams

• Streams are lazy Scheme Lists.

• The rest of the list is not evaluated until you ask for it.

• Once you have asked for it once, it will save (memoize) the
value so that it will not be evaluated again.

27

Streams

• cons-stream creates a pair where the second is a stream.

• nil is an empty stream.

• car returns the first element.

• cdr-stream computes and returns the rest of the stream.

• cdr will not calculate the next value.

28

Streams

29

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s

Streams

30

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])

1
fn

Streams

31

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)

1
fn

Streams

32

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)
(2 . #[promised (not forced)])

1 2
fn

Streams

33

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)
(2 . #[promised (not forced)])
> s

1 2
fn

Streams

34

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)
(2 . #[promised (not forced)])
> s
(1 . #[promised (forced)])

1 2
fn

Streams

35

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)
(2 . #[promised (not forced)])
> s
(1 . #[promised (forced)])
> (cdr-stream (cdr-stream (cdr-stream s)))

1 2
fn

Streams

36

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)
(2 . #[promised (not forced)])
> s
(1 . #[promised (forced)])
> (cdr-stream (cdr-stream (cdr-stream s)))
()

1 2 nil

Streams

37

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)
(2 . #[promised (not forced)])
> s
(1 . #[promised (forced)])
> (cdr-stream (cdr-stream (cdr-stream s)))
()
> (cdr s)

1 2 nil

Streams

38

> (define s (cons-stream 1 (cons-stream 2 nil)))
> s
(1 . #[promised (not forced)])
> (cdr-stream s)
(2 . #[promised (not forced)])
> s
(1 . #[promised (forced)])
> (cdr-stream (cdr-stream (cdr-stream s)))
()
> (cdr s)
#[promised (forced)]

1 2 nil

Streams (Python)

• Streams in Python are lazy linked lists.

• There rest of the linked lists is not computed yet until we need
it.

39

Streams (Python)

40

class Stream:
 class empty:
 def __repr__(self):
 return 'Stream.empty'

 empty = empty()

 def __init__(self, first, compute_rest=lambda: Stream.empty):
 assert callable(compute_rest), 'compute_rest must be callable.'
 self.first = first
 self._compute_rest = compute_rest

 @property
 def rest(self):
 """Return the rest of the stream, computing it if necessary."""
 if self._compute_rest is not None:
 self._rest = self._compute_rest()
 self._compute_rest = None
 return self._rest

 def __repr__(self):
 return 'Stream({0}, <...>)'.format(repr(self.first))

Streams (Python)

• __init__(self, first, compute_rest)

• compute_rest is a function with 0 parameters that returns the
rest of the stream.

• By default it is a lambda function that returns Stream.empty.

41

Streams (Python)
• Let s be a Stream instance.

• At initialization, self._compute_rest is assigned to the function
that we pass in.

42

 def __init__(self, first, compute_rest=lambda: Stream.empty):
 assert callable(compute_rest), 'compute_rest must be callable.'
 self.first = first
 self._compute_rest = compute_rest

Streams (Python)
• When we call s.rest the first time, we will calculate the rest of

the stream by calling self._compute_rest().

43

 @property
 def rest(self):
 """Return the rest of the stream, computing it if necessary."""
 if self._compute_rest is not None:
 self._rest = self._compute_rest()
 self._compute_rest = None
 return self._rest

Streams (Python)
• For all subsequent calls to s.rest, we can just return self._rest

without calculating the value again.

44

 @property
 def rest(self):
 """Return the rest of the stream, computing it if necessary."""
 if self._compute_rest is not None:
 self._rest = self._compute_rest()
 self._compute_rest = None
 return self._rest

Recap

• Iterators goes over the elements of a sequence one at a time.

• Generators return generator objects that returns at yield and
passes the frame.

• Streams are lists such that the rest of the list is not calculated
until we need it.

45

