
CS 61A
Discussion 11

SQL and Aggregation

Raymond Chan
Discussion 121
UC Berkeley

1

Agenda
• Announcements

• SQL

• Joins

• Aggregation

• Recursive Select

2

Announcements

• Scheme Project due 4/25 (Next Monday)

• Lab 12 due Friday

• Homework 8 due 4/27

• Ants Composition Revision due 4/29

• Attendance:	http://goo.gl/forms/Wmn49priWN

3

http://goo.gl/forms/Wmn49priWN

SQL

• Declarative programming: tells the interpreter what we want.

• Describe the result, not the behavior.

• Data in SQL are stored in tables with a fixed number of
columns.

• Each row represent a data entry.

4

SQL
• We use select statements to create tables.

• Each select creates a table.

5

> select “Ben” as first, “Bitdiddle” as last;
Ben | Bitdiddle

SQL
• Multiple tables can have the same number of columns.

• We can combine the rows of the tables with union, creating a
larger table

6

> select “Ben” as first, “Bitdiddle” as last union
> select “Louis”, “Reasoner”;
Ben | Bitdiddle
Louis | Reasoner

SQL

• Column headings do not have to be repeated.

7

> select “Ben” as first, “Bitdiddle” as last union
> select “Louis”, “Reasoner”;
Ben | Bitdiddle
Louis | Reasoner

SQL
• To save newly created tables, we use create table.

• create table [table name] as [select statements]

8

CREATE TABLE records AS
 SELECT "Ben Bitdiddle" AS name, "Computer" AS division, "Wizard" AS

title, 60000 AS salary, "Oliver Warbucks" AS supervisor UNION
 SELECT "Alyssa P Hacker", "Computer", "Programmer", 40000, "Ben

Bitdiddle" UNION
 SELECT "Cy D Fect", "Computer", "Programmer", 35000,

"Ben Bitdiddle" UNION
 SELECT ………

SQL

• We can now make queries to the table.

• select * means select all from table.

• select * from records;

• Prints out the contents of the table.

9

SQL

• There must be at least 1 column and a table.

• Everything else is optional.

10

select [column1], [column2], … from [table]

where [condition] order by [criteria] limit [number of entries]

SQL
• SQL expressions.

• Comparators: =, >, <, <=, >=, !=, <> (“not equal”)

• Booleans: and, or

• Arithmetic: +, -, *, /

• We use || to concatenate strings.

11

> select “hello” || “world”
hello world

SQL

• Demo and Worksheet Problems

12

Joins

• Data can be combined by joining multiple tables together.

• The result table contains a new row for each combination of
rows in the input tables.

13

select [column1], [column2], … from [table1], [table2] …

where [condition] order by [criteria]

Joins

14

> select name, day from records, meetings;
Ben Bitdiddle | Monday
Ben Bitdiddle | Wednesday
Ben Bitdiddle | Monday
…
Alyssa P Hacker | Monday
…

• Notice that there are “duplicates” because we have filtered out
the rest of the data for the rows.

Joins

• Tables can have the same column names.

• Tables can also be joined with themselves.

• To distinguish between columns, we give aliases to tables in
the from clause.

• To refer to a specific table’s column, we use dot notation.

15

Joins

16

select [some_alias].[column1], [some_alias].[column2], …

from [table1] as [alias1], [table2] as [alias2] …

where [condition] order by [criteria]

Joins

17

> select b.name, b.title from records as a, records as b

… where a.name = “Louis Reasoner” and

… a.supervisor = b.name;

Alyssa P Hacker | Programmer

Aggregation
• Aggregation operations are performed over multiple rows.

• min, max, average, sum, count

• They all take in 1 argument: a column name or *

• These functions retrieve more information from initial tables.

18

Aggregation
• Find name and salary of the person that makes the most

money.

19

Aggregation
• Find name and salary of the person that makes the most

money.

20

> select name, max(salary) from records;

Oliver Warbucks | 150000

Aggregation
• We can count the number of rows to determine the number of

employees.

21

Aggregation
• We can count the number of rows to determine the number of

employees.

22

> select count(*) from records;

9

Aggregation

• Aggregation can be performed on specific sets of rows.

• group by [column name] groups all the rows that have the
same value in column name.

23

Aggregation
• Find the minimum salary earned in each division of the

company.

24

Aggregation
• Find the minimum salary earned in each division of the

company.

25

> select division, min(salary) from records group by division;

Computer | 25000

Administration | 25000

Accounting | 18000

Aggregation

• Groups can be filtered by the having clause.

• This is similar to the where clause.

26

Aggregation
• Find all titles that are held by more than one person

27

Aggregation
• Find all titles that are held by more than one person

28

> select title from records group by title having count(*) > 1;

Programmer

Aggregation
• Aliases can also be used with aggregation results

29

> select title, count(*) as count from records

… group by title having count > 1;

Programmer

Aggregation
• Aliases can also be used with aggregation results

30

> select title, count(*) as count from records

… group by title having count > 1;

Programmer

Recursive Queries

• We can create local tables using the with clause.

• They cannot be used outside of the select statement.

• Can be thought of as “helper” tables.

• Use the local tables to compute the final result

31

Recursive Queries

32

with [local-tables] select [columns] from [tables]

 where [condition] order by [criteria]

with [local-table-name] as (… content …)

select [columns] from [tables] where [condition] order by [criteria]

Recursive Queries

33

WITH schedule(day, dresscode) as (
 SELECT "Monday", "Sports" UNION
 SELECT "Tuesday", "Drag" UNION
 SELECT "Wednesday", "Regular" UNION
 SELECT "Thursday", "Throwback" UNION
 SELECT "Friday", "Casual"
)
SELECT a.name, b.dresscode
 from records as a, schedule as b, meetings as c
 where a.division = c.division and
 b.day = c.day order by a.name;

Recursive Queries

34

Alyssa P Hacker | Regular
Ben Bitdiddle | Regular
Cy D Fect | Regular
DeWitt Aull | Sports
…

> select * from schedule;
Error

Recursive Queries
• Using the with clause, we can create recursive tables.

• The local table has base case(s) and recursive case(s).

35

create table naturals as
 with num(n) as (
 select 0 union
 select n + 1 from num where n < 5
)
 select * from num;

Recursive Queries
• The initial table initially has a column with 1 row and value of 0.

• In the recursive case we add 1 to a value of the table entries
that has not used before.

36

create table naturals as
 with num(n) as (
 select 0 union
 select n + 1 from num where n < 5
)
 select * from num;

Recursive Queries

• The condition that stops the recursive occurs in the where
clause of the recursive case.

37

create table naturals as
 with num(n) as (
 select 0 union
 select n + 1 from num where n < 5
)
 select * from num;

Recap
• In SQL we tell the interpreter what we want.

• Tables are created with select statements that can filter
information.

• We can join tables and use alias to distinguish column names.

• Aggregation looks at multiple entries of the table.

• Recursive queries can be created when using local tables.

38

