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Master’s Theorem

For any recurrence relation with the following structure,

T(n) = a-T([n/b]) + O(n?)

O(n?) if d > log, a
T(n) =< O(ntlogn) if d =log,a
O(n'°#»2)  if d < log, a

If we take a look at the following unrolled recurrence tree.
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At some k-th level, the size of the subproblem is n/b*. Because of the branching factor of a, there are a* of these
subproblems and the amount of work at that level will be O(a” - (%))
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The total amount of work for the entire recurrence tree is the sum of the work at each level. Since each subproblem

gets smallers by factor 1/b, there are a total log, n levels. Summing up the terms gives us the following geometric

log, n

T(n)= Y 0" (1)
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Let’s first look at the sum of a geometric series.
=\ . rrtl 1
S(n) = ar® =a——— if r#1
()% — #
r-r®—1

- r—1

=alr —
r—1 r—1

If r > 1, we have an increasing geometric series. When n gets significantly large, ™ approaches infinity, and
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Thus when r > 1, S(n) € O(ar™), Q(ar™), O(ar
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The sum can also be written as
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Now if r < 1, we have a decreasing geometric series. When n get significantly large, r™ approaches 0, and
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S(n) € O(a)

Also,

S(n)>c-a
S(n) € Qa)

Thus when r < 1, 5(n) € O(a), 2(a), O(a).
When r = 1, all the terms in the series is a. Thus S(n) = an and S(n) € ©(an).

Substituting O(n?) as a, r as 72, and n as log, n, we get back our geometric sum of the recurrence tree.
For a decreasing geometric series,
a
T = bfd < 1
a < b?
logy,a < d

S(n) € ©(a) and T(n) € ©(n?), which is the first case of the master’s theorem. Note that we prove it for ©(-), which
)

means it works for both O(-) and (-).
When
a
r= b7 =1
log,a=d

S(n) € ©(an) and T(n) € ©(nlog, n), which is the second case of the master’s theorem.

For an increasing geomteric series,
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Thus T'(n) € ©(n'°%» %), which is the third case of the master’s theorem.



