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Raymond Chan

Fast Fourier Transform

Polynomial Multiplication

Given two polynomials A(z) = ag + a12 + as2? + ... aqx? and B(z) = by + b1x + bax® + ... bgx?,

d

we want C(z) = A(z) - B(z) = co + c12 + co + 22 + - - - + coq2*¢ where

¢ = aobg, + a1bp—1 ... apbg = Z ka;bg_;
1=0

This is really slow because we have to evaluate every pairwise coefficients between A(x) and B(z) to compute C(z),
which is O(d?).

Since any polynomial with degree d can be determined by d + 1 points, we can use these values to represent our
polynomials. Now C(z;) = A(z;) - B(z;). The step would take only O(d). Below we have another method for
polynomial multiplication.

Selection
Pick points zg, z1,...,Tn_1, n > 2d + 1.

Evaluation
Compute A(zg), A(x1),..., A(zpn-1), B(xo), B(z1),...,B(zn_1).

Multiplication

Compute C(x) = A(zy) - B(xg), k=0,1,...,n— 1.

Interpolation

Recover C(z) = ¢ + c12 + c22? + . .. co92? from C(x,), k =0,1,...,n — 1.

Selection and Multiplication takes O(n) time. We need to do evaluation and interpolation in sub-O(n?) time.



Evaluation Divide and Conquer

Suppose we pick plus-minus pairs of = such that we have +wg, +x1,..., 4w, /2_1, squaring the plus-minus pairs gives
2 .2 2

us the same value. zg, z7, ... T o

Looking at an example,

A(w) =3+ 4z + 62% + 22° + 2* +102° = 3+ 62° + 2*) + 2(4 + 22° + 102*)

In the RHS, we have A.(z) = 3+ 6x + 2% and LHS A,(x) = 4 + 2z + 102%. A.(-) contains the even degree coefficients
and A,(-) contains the odd degree coefficients. In general terms,

A(z) = Ao (2?) + 2 A, (2?)
In our example,

Ao(z) = 34 62 + 2
Ay(x) = 4+ 22 + 102?

If we use positive-negative pairs x;,
Ax;) = Ae(2?) + 2A4(2?)
A(—x;) = Ac(2?) — 2A,(2?)

After the first level, we have to make xg and x1, x5 and x3,... positive negative pairs as well. If we can do this until
n = 1, at each level we make two recursive calls to evaluate a problem that is half the size. Thus we have a recurrence
relation T'(n) = 2T (n/2) + O(n) and runtime O(nlogn).

Back to finding values of = that we can keep finding pairs such that there will be positive-negative pairs after squaring
them. This can be achieved using complex numbers.

Squaring +1 and —1 gives us +1. Simiarily, squaring +i and —i gives us —1. Now at this level, squaring +1 and
—1 gives us +1.

The complex plane
Imaginary . oy
! % = a + bi is plotted at position (a, b).
b| )
Polar coordinates: rewrite as z = r(cosf + isinf) = re®,
denoted (r,0).

e length r = v/a? + b2.

e angle 0 € [0,27): cos@ = a/r,sinf = b/r.

Real e § can always be reduced modulo 2.

Number | -1 i 5+ 51
Polar coords | (1,7) (1,7/2) (5v/2,m/4)

Examples:




If we use nth roots of unity, such that n is a power of two, we can keep squaring pairs at each level.
The nth roots of unity are complex numbers 1, w,w?,...,w" !, where w = €2™/". When n is even, these roots are

plus-minus pairs, w2t = —w’. Squaring them produces us (n/2)nd roots of unity.

These n roots are solutions to the equation 2™ = 1. Solutions are z = re’® for some multiple of 27 /n.
In the unit circle, the numbers are plus-minus paired. —cos€ —isin€ = cos (6 + 7) + isin (6 + 7).
The squares will be the (n/2)nd roots of unity, which is the immediate left with a box around the point.

Now let us see why adding 7 will negate the number. Picking a point on the z axis, we can see that negating
the points is the same as adding 7 on the sine and cosine curves.

/()

f(z) = cosx

Below we have the polynomial formulation of the fast Fourier transform. A has polynomial of degree < mn — 1.

procedure FFT(A,w)
if w =1 then return A(1)
Split A(x) into A.(2?) + A,(x?)
FFT(A.,w?)
FFT(A,,w?)
for j =0,—1do
A(w?) = Ao (w?) + w Ay (w?)
return A(w'),... A(w" 1)



Evaluation FFT Example

Let’s use our example from earlier.

A(z) =3+ 4z + 62® + 22° + 2* + 102° = (3 + 627 + 2*) + 2(4 + 22 + 102*)

o Level 1
We see that A(x) has degree 5, so we need the smallest power of two > 6.

Thus we have n = 8 and w = €2>™/8 = ¢™/* = cos(n/4) + isin(n/4). Below are the 8 roots of unity in positive

negative pairs.

Wwi=1
wt = €™ = cos(7) + isin(m) = —1

, 1414

= em4 = cos(/4) + isin(r/4) =
wo=e cos(m isin(mw
V2

, 144

w® = ™/ = cos(5m/4) + isin(5m/4) = — \;;

w? = ™% = cos(n/2) + isin(n/2) =i

w® = €3™/2 = cos(3m/2) + isin(37/2) = —i

w? = 3™ = cos(3m isin(3w =—1_i
S=e (3m/4) + isin(3m/4) 7
w' = €™/ = cos(Tr isin(7m :17i
T=emi (Tm/4) + isin(Tm/4) 7
Next we split A(x) into two recursive polynomials.
A(x) = Ae(2?) + zAo(2?)
Ao(x) = B(z) = 3 + 62 + 2*
Ay(z) = C(z) = 4 + 22 + 1022
Substituting the roots of unity,
AW®) = B(1*) + C(1*) = B(1) + C(1)
Aw') = B((-1)*) = C((-1)*) = B(1) - C(1)
A(w?) = B(i%) +iC(i*) = B(—1) +iC(-1)
Aw®) = B((=0)*) +iC((—i)*) = B(-1) —iC(-1)
A(w!) = B((l\gf) + 1\;0((1\2Z )) = B) + 17*;0(2')
1+ivo\ 141 1+4° 1+i .,
AW =B((-—5)") - 5 (-5 ) = BO - 500
1—iv2y 1—i 1—4° 1—i
AW =B((~ =) ) - = o((- = )) = B(~i) - =5 C)
AWT) = B((l\;;)Q) + %c((ig )) = B(-i) + 1&’0(—2')



After the recursive call

Aw®) = B(1) +C(1) = 10 + 16 = 26
A(w*) = B(1) - C(1) =10 — 16 = —6
A(w?) = B(=1) +iC(~1) = =2+ 12i
AW = B(-1) —iC(~1) = -2 — 12i
AW') = Bli) + 21 000) = 24 61 4 (220) (=6 4+ 20) = 2+ 61 — (4 + 20)V3
(w—(z)—i—\/5 z)——|—z—|—(\/§)—+z—+z— i)

5y By - LT - L VAP . .
A(W®) = B(i) ﬂC() 246 (ﬁ)( 64 2i) =2+ 6i + (4 + 20)V2
A(w®) = B(—i) — 1\;;0(—2’) =2—6i+ (1\;;)(—6 —2i) = (2 — 6i) — (4 — 2i)V/2

1—i 1—i

(=6 — 2i) = (2 — 6i) + (4 — 20)V/2

Thus we have the points that we need.

e Level 2

Both B(z) and C(z) have degree 2 polynomial. Thus we end up with the 4 roots of unity via the recursive call,
w = 2mi/4

0

w =1

w? = €™ = cos(m) +isin(n) = —1

wh = e™/? = cos(m/2) + isin(n/2) =i

w? = e3™/2 = cos(3m/2) + isin(37/2) = —i

Again we split both B(z) and C(z) into two halves,

B(z) = 3+ 62 + 2% = B.(2?) + 2B, (%)
Be(z) =D(z) =3+=
B,(z)=E(z)=6

C(z) =14

+

22 + 102% = C.(z) + 20, (2?)

Substituing the 4 roots of unity,

B(w°) = D(1*)+ E(1?) = D(1) + E(1)

B(w?*) = D((-1)*) = E((-1)*) = D(1) — E(1)
B(w') = D(i%) +iE(i*) = D(—1) +iE(-1)

B(w’) = D((=)*) —iE((—i)*) = D(~=1) —iE(-1)
Cw") = F(1)+G(1)

C(w?) = F(1) - G(1)

C(wh) = F(=1) +iG(-1)

C(w?) = F(—1) —iG(-1)



After the recursive call

e Level 3

Now we are left with 2 roots of unity for functions D(z), E(x), F(x), G(z).

B(w°) = D(1) + E(1)
B(w?) = D(1) — E(1)
B(w') = D( '

B(w?*) = D( i

Cw") = F(1)+G(1)
C(w?) = F(1) - G(1)
C(w') = F(—1) 4+iG(
C(w?) = F(—1) —iG(

At this point, we can just do

arithmetic. However, I will show how the algorithm continues until the next level, which is the base case.
Again we split the 4 functions into halves,

We have 2 roots of unity,

After the recursive calls

D(z)=3
D.(x)=3
D,(z)=1

E(z)=6=
E.(z)=6
Ey(z)=0

F(z)=4
F.(z)=4
Fo(x) =10

Gx)=2=
Ge(x) =2
Go(x)=0

D(w’) = De(1%) + Do(17)
D(w") = De((-1)*) + D
E(W) = Ee(1) + Eo(1)
E(w') = Ec(1) = Eo(1)
F(w’) = Fo(1) + Fo(1)
F(w') = Fe(1) = Fo(1)
G() = Ge(1) + Go(1)
G(w') = Ge(1) = Go(1)

+ 2 = D (2?) + D, (x?)

E, (xz) +2FE, (x2)

+ 102 = F.(2?) + 2 F,(2?)

Go(2?) + 2Go(2?)



e Level 4 - Base Case

DWW’ =D(1)=3+1=
Dwh =D(-1)=3-1=
EW)=E1)=3+0=6
EwY=E(-1)=3-0=
Fw))=F1)=4+10=14
Fw)=F(-1)=4-10= -6
GW)=G1)=2+0=2
GuwhH=G(-1)=2-0=2

At w =1, we just return our functions with 1 passed in. Now we can propagate upwards.

De(1) =3,D,(1) =1
Ec(1) =6,Eo(1) =0
F.(1) = 4,F,(1) = 10
Ge(1) =2,Go(1) =0



Interpolation

After obtaining values, we need to get it back to coefficients. Let’s take a look at the following matrix.

A(l’o) 1 1 1 N 1 ap
A(z) 1w w? e w1 a;
Aan )| |1 w1t w200 ey | g,
Let’s call the middle matrix M, (w). In this special ordering, we have a Vandermonde matrix. If w® w!, ..., w1 are
distinct, M, (w) is invertible. Thus we can obtain the coeflicients using
A(I’o) Qg
A(Z’l) a1
S e R I
A(zn—l) Ap—1
We need to find (M, (w))~! such that M, (w)(M,(w))~t = L,.
Lets try M, (w)M,, (w™1).
1 1 1 e 1 1 1 1 . 1
1 w w? e w1 1 wt w2 e w1
7 —
i wnﬁ wz(ﬁq) o w(nfl.)(nfl) 1 wf(;zfl) w72(.n71) o w*(nf.l)(nfl)

For (row, column) (j, k), we have

n—1
Z(j,k) — Z wm(j—l)w—’rn(k—l)
m=0
n—1
_ Z wm(j—k)
m=0

=) wmn6-h)
m=1

This becomes a geometric series with » = w/~*. When j = k, Z = n, which is the term for the entries on the diagonal
of the matrix.

When j # k
n i—k)\n
Lm-DG-k _ 1= (wi=M)
1 — wl—Fk)
m=1
]_ — wn(jfk)
TGk
W= 627ri/n

1— e2(j—k)7ri

260 = 1= aG—mmin
20— — cos(2(f — k)m) + isin(2(j — k)m)
=1410
=1
1 — 26—k)mi 0
1_ e2G—R)mi/n — 1 _ g2(i—k)mi/n
Sy =00 Fk



Thus



Matrix Form FFT

Column Column
k 2k 2k+1 2k 2k+1
\‘ I I I I
ag ao ao
ay a . . , as
. . Row j+ w?k wl . w2k .
. a3 0 a - 2
JjT uﬂk a4 — it w2k Wl - W2k 2 = i
ay ay
“ j+n/2-+ Wk —wd - w2k s
An—1 An—1 An—1
My (w) a Even 0Odd
columns columns
1 1 1 ... 1
1 w w? ... wmn=1)
Myw)=1|. | . . =[]
1 w(n—l) w2(n—1) L w(n—l)(n—l)

First, let’s split the matrix where the even index columns 2k are on the left side and the odd index columns (2k+1)
are on the right side, 0 < k < n/2.

1 1 1 e 1

1w w' w? 4 L . A .
— [w72jk w*]72]k] — [w72jk wI _w72jk:|

i wZ(r.L—l) w(n—l) w3(?;,—1)

Since the column range k has decreased by a half, each element w’* increases to w?*. For each k, the difference
between the even column and the odd column is by a multiplicative factor of w/. Thus we multiply the even column
elements by w’ to obtain the odd column elements.

Now, lets split the matrix up and bottom. Row index is now 0 < j < n/2. Upper portion row indices are j. Lower
portion row indices are j + n/2.

By decreasing the domain of j by a half, the difference between the lower right half and the upper right half is

j =mn/2. Thus the difference is a multiplicative factor of w™/? which is —1 as shown below.
W = (627ri/n)n
— e27ri

= cos 27 + 28in 27
=1
kn _ 2kmi
cos 2km + i sin 2km
=1

wn/2 _ (eQwi/n)n/2

T

(&

cosm+sinm
=-1

OJkn/2 — ekm

coskm + isin kr
=-1
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Take j = 1 for example, we set the LHS as —1- upper right elements, and set RHS as lower right elements.

C(w - W) = (/D 2 2)k
1w w?k) = /2 ek
(w-w) = w22 gk
1w -w*)=-1-w-w*

Thus to obtain the lower right half elements, we multiply the upper right half elements by w”™/? = —1.
Similarly, we can see that the multiplicative difference of the upper left elements and the lower left elements is only 1.
Using the j = 1 example.

2juk _ w2k

w
W2tk — 2(14n/2)k
— w(n+2)k
— k. 2k
=1 w2

— 2uk

With the multiplicative factor between the upper left and lower left being 1, we can leave as is.

1 1 1 1
1 w? w w3 24k i 24k
- ol [w ' Wl w2
: . = |2k i . 2k
1 w2(n71) w(nfl) w3(n71)

With all four corners sharing elements w2jk, such that 0 < j <n/2 and 0 < k < n/2, we have a n/2 x n/2 matrix.

1 1 1 e 1
1 w? Wt wm=2)

: : : = n/2(w)
1 " w2 . w(7z—2)(n—2)

V(o) = [Yorale) (o

Mn/Z(w) _WJMn/2(W)

1Diagrams from Course Textbook, Algorithms by Dasgupta, Papadimitriou, and Vazirani
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