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Fast Fourier Transform

Polynomial Multiplication

Given two polynomials A(x) = a0 + a1x+ a2x
2 + . . . adx

d and B(x) = b0 + b1x+ b2x
2 + . . . bdx

d,
we want C(x) = A(x) ·B(x) = c0 + c1x+ c2 + x2 + · · ·+ c2dx

2d where

ck = a0bk + a1bk−1 . . . akb0 =
∑
i=0

kaibk−i

This is really slow because we have to evaluate every pairwise coefficients between A(x) and B(x) to compute C(x),
which is O(d2).

Since any polynomial with degree d can be determined by d + 1 points, we can use these values to represent our
polynomials. Now C(xi) = A(xi) · B(xi). The step would take only O(d). Below we have another method for
polynomial multiplication.

• Selection
Pick points x0, x1, . . . , xn−1, n ≥ 2d+ 1.

• Evaluation
Compute A(x0), A(x1), . . . , A(xn−1), B(x0), B(x1), . . . , B(xn−1).

• Multiplication
Compute C(xk) = A(xk) ·B(xk), k = 0, 1, . . . , n− 1.

• Interpolation
Recover C(x) = c0 + c1x+ c2x

2 + . . . c2dx
2d from C(xk), k = 0, 1, . . . , n− 1.

Selection and Multiplication takes O(n) time. We need to do evaluation and interpolation in sub-O(n2) time.
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Evaluation Divide and Conquer

Suppose we pick plus-minus pairs of x such that we have ±x0,±x1, . . . ,±xn/2−1, squaring the plus-minus pairs gives
us the same value. x20, x

2
1, . . . , x

2
n/2−1.

Looking at an example,

A(x) = 3 + 4x+ 6x2 + 2x3 + x4 + 10x5 = (3 + 6x2 + x4) + x(4 + 2x2 + 10x4)

In the RHS, we have Ae(x) = 3 + 6x+ x2 and LHS Ao(x) = 4 + 2x+ 10x2. Ae(·) contains the even degree coefficients
and Ao(·) contains the odd degree coefficients. In general terms,

A(x) = Ae(x
2) + xAo(x

2)

In our example,

Ae(x) = 3 + 6x+ x2

Ao(x) = 4 + 2x+ 10x2

If we use positive-negative pairs xi,

A(xi) = Ae(x
2) + xAo(x

2)

A(−xi) = Ae(x
2)− xAo(x2)

After the first level, we have to make x0 and x1, x2 and x3, . . . positive negative pairs as well. If we can do this until
n = 1, at each level we make two recursive calls to evaluate a problem that is half the size. Thus we have a recurrence
relation T (n) = 2T (n/2) +O(n) and runtime O(n log n).

Back to finding values of x that we can keep finding pairs such that there will be positive-negative pairs after squaring
them. This can be achieved using complex numbers.

Squaring +1 and −1 gives us +1. Simiarily, squaring +i and −i gives us −1. Now at this level, squaring +1 and
−1 gives us +1.
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If we use nth roots of unity, such that n is a power of two, we can keep squaring pairs at each level.
The nth roots of unity are complex numbers 1, ω, ω2, . . . , ωn−1, where ω = e2πi/n. When n is even, these roots are
plus-minus pairs, ωn/2+j = −ωj . Squaring them produces us (n/2)nd roots of unity.

These n roots are solutions to the equation zn = 1. Solutions are z = reie for some multiple of 2π/n.
In the unit circle, the numbers are plus-minus paired. − cos θ − i sin θ = cos (θ + π) + i sin (θ + π).
The squares will be the (n/2)nd roots of unity, which is the immediate left with a box around the point.

Now let us see why adding π will negate the number. Picking a point on the x axis, we can see that negating
the points is the same as adding π on the sine and cosine curves.

2π − 3
2π
−π −π2

π
2

π 3
2π

2π

−1

1

f(x) = sinx

f(x) = cosx

x

f(x)

Below we have the polynomial formulation of the fast Fourier transform. A has polynomial of degree ≤ n− 1.

procedure FFT(A,ω)
if ω = 1 then return A(1)

Split A(x) into Ae(x
2) +Ao(x

2)
FFT(Ae, ω

2)
FFT(Ao, ω

2)
for j = 0,−1 do

A(ωj) = Ae(ω
2j) + ωjAo(ω

2j)
return A(ω0), . . . A(ωn−1)
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Evaluation FFT Example

Let’s use our example from earlier.

A(x) = 3 + 4x+ 6x2 + 2x3 + x4 + 10x5 = (3 + 6x2 + x4) + x(4 + 2x2 + 10x4)

• Level 1
We see that A(x) has degree 5, so we need the smallest power of two ≥ 6.
Thus we have n = 8 and ω = e2πi/8 = eπi/4 = cos(π/4) + i sin(π/4). Below are the 8 roots of unity in positive
negative pairs.

ω0 = 1

ω4 = eπi = cos(π) + i sin(π) = −1

ω1 = eπi/4 = cos(π/4) + i sin(π/4) =
1 + i√

2

ω5 = e5πi/4 = cos(5π/4) + i sin(5π/4) = −1 + i√
2

ω2 = eπi/2 = cos(π/2) + i sin(π/2) = i

ω6 = e3πi/2 = cos(3π/2) + i sin(3π/2) = −i

ω3 = e3πi/4 = cos(3π/4) + i sin(3π/4) = −1− i√
2

ω7 = e7πi/4 = cos(7π/4) + i sin(7π/4) =
1− i√

2

Next we split A(x) into two recursive polynomials.

A(x) = Ae(x
2) + xAo(x

2)

Ae(x) = B(x) = 3 + 6x+ x2

Ao(x) = C(x) = 4 + 2x+ 10x2

Substituting the roots of unity,

A(ω0) = B(12) + C(12) = B(1) + C(1)

A(ω4) = B((−1)2)− C((−1)2) = B(1)− C(1)

A(ω2) = B(i2) + iC(i2) = B(−1) + iC(−1)

A(ω6) = B((−i)2) + iC((−i)2) = B(−1)− iC(−1)

A(ω1) = B
((1 + i√

2

)2)
+

1 + i√
2
C
((1 + i√

2

2))
= B(i) +

1 + i√
2
C(i)

A(ω5) = B
((
− 1 + i√

2

)2)− 1 + i√
2
C
((
− 1 + i√

2

2))
= B(i)− 1 + i√

2
C(i)

A(ω3) = B
((
− 1− i√

2

)2)− 1− i√
2
C
((
− 1− i√

2

2))
= B(−i)− 1− i√

2
C(−i)

A(ω7) = B
((1− i√

2

)2)
+

1− i√
2
C
((1− i√

2

2))
= B(−i) +

1− i√
2
C(−i)
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After the recursive call

A(ω0) = B(1) + C(1) = 10 + 16 = 26

A(ω4) = B(1)− C(1) = 10− 16 = −6

A(ω2) = B(−1) + iC(−1) = −2 + 12i

A(ω6) = B(−1)− iC(−1) = −2− 12i

A(ω1) = B(i) +
1 + i√

2
C(i) = 2 + 6i+

(1 + i√
2

)
(−6 + 2i) = 2 + 6i− (4 + 2i)

√
2

A(ω5) = B(i)− 1 + i√
2
C(i) = 2 + 6i−

(1 + i√
2

)
(−6 + 2i) = 2 + 6i+ (4 + 2i)

√
2

A(ω3) = B(−i)− 1− i√
2
C(−i) = 2− 6i+

(1− i√
2

)
(−6− 2i) = (2− 6i)− (4− 2i)

√
2

A(ω7) = B(−i) +
1− i√

2
C(−i) = 2− 6i−

(1− i√
2

)
(−6− 2i) = (2− 6i) + (4− 2i)

√
2

Thus we have the points that we need.

• Level 2
Both B(x) and C(x) have degree 2 polynomial. Thus we end up with the 4 roots of unity via the recursive call,
ω = e2πi/4,

ω0 = 1

ω2 = eπi = cos(π) + i sin(π) = −1

ω1 = eπi/2 = cos(π/2) + i sin(π/2) = i

ω3 = e3πi/2 = cos(3π/2) + i sin(3π/2) = −i

Again we split both B(x) and C(x) into two halves,

B(x) = 3 + 6x+ x2 = Be(x
2) + xBo(x

2)

Be(x) = D(x) = 3 + x

Bo(x) = E(x) = 6

C(x) = 4 + 2x+ 10x2 = Ce(x) + xCo(x
2)

Ce(x) = F (x) = 4 + 10x

Co(x) = G(x) = 2

Substituing the 4 roots of unity,

B(ω0) = D(12) + E(12) = D(1) + E(1)

B(ω2) = D((−1)2)− E((−1)2) = D(1)− E(1)

B(ω1) = D(i2) + iE(i2) = D(−1) + iE(−1)

B(ω3) = D((−i)2)− iE((−i)2) = D(−1)− iE(−1)

C(ω0) = F (1) +G(1)

C(ω2) = F (1)−G(1)

C(ω1) = F (−1) + iG(−1)

C(ω3) = F (−1)− iG(−1)
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After the recursive call

B(ω0) = D(1) + E(1) = 4 + 6 = 10

B(ω2) = D(1)− E(1) = 4− 6 = −2

B(ω1) = D(−1) + iE(−1) = 2 + 6i

B(ω3) = D(−1)− iE(−1) = 2− 6i

C(ω0) = F (1) +G(1) = 14 + 2 = 16

C(ω2) = F (1)−G(1) = 14− 2 = 12

C(ω1) = F (−1) + iG(−1) = −6 + 2i

C(ω3) = F (−1)− iG(−1) = −6− 2i

• Level 3
Now we are left with 2 roots of unity for functions D(x), E(x), F (x), G(x). At this point, we can just do
arithmetic. However, I will show how the algorithm continues until the next level, which is the base case.
Again we split the 4 functions into halves,

D(x) = 3 + x = De(x
2) + xDo(x

2)

De(x) = 3

Do(x) = 1

E(x) = 6 = Ee(x
2) + xEo(x

2)

Ee(x) = 6

Eo(x) = 0

F (x) = 4 + 10x = Fe(x
2) + xFo(x

2)

Fe(x) = 4

Fo(x) = 10

G(x) = 2 = Ge(x
2) + xGo(x

2)

Ge(x) = 2

Go(x) = 0

We have 2 roots of unity,

D(ω0) = De(1
2) +Do(1

2) = De(1) +Do(1)

D(ω1) = De((−1)2) +Do((−1)2) = De(1)−Do(1)

E(ω0) = Ee(1) + Eo(1)

E(ω1) = Ee(1)− Eo(1)

F (ω0) = Fe(1) + Fo(1)

F (ω1) = Fe(1)− Fo(1)

G(ω0) = Ge(1) +Go(1)

G(ω1) = Ge(1)−Go(1)

After the recursive calls
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D(ω0) = D(1) = 3 + 1 = 4

D(ω1) = D(−1) = 3− 1 = 2

E(ω0) = E(1) = 3 + 0 = 6

E(ω1) = E(−1) = 3− 0 = 6

F (ω0) = F (1) = 4 + 10 = 14

F (ω1) = F (−1) = 4− 10 = −6

G(ω0) = G(1) = 2 + 0 = 2

G(ω1) = G(−1) = 2− 0 = 2

• Level 4 - Base Case
At ω = 1, we just return our functions with 1 passed in. Now we can propagate upwards.

De(1) = 3, Do(1) = 1

Ee(1) = 6, Eo(1) = 0

Fe(1) = 4, Fo(1) = 10

Ge(1) = 2, Go(1) = 0
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Interpolation

After obtaining values, we need to get it back to coefficients. Let’s take a look at the following matrix.
A(x0)
A(x1)

...
A(xn−1)

 =


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

...
...

...
. . .

...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)



a0
a1
...

an−1


Let’s call the middle matrix Mn(ω). In this special ordering, we have a Vandermonde matrix. If ω0, ω1, . . . , ωn−1 are
distinct, Mn(ω) is invertible. Thus we can obtain the coefficients using

(Mn(ω))−1


A(x0)
A(x1)

...
A(xn−1)

 =


a0
a1
...

an−1


We need to find (Mn(ω))−1 such that Mn(ω)(Mn(ω))−1 = In.

Lets try Mn(ω)Mn(ω−1).

Z =


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

...
...

...
. . .

...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)




1 1 1 . . . 1
1 ω−1 ω−2 . . . ω−(n−1)

...
...

...
. . .

...
1 ω−(n−1) ω−2(n−1) . . . ω−(n−1)(n−1)


For (row, column) (j, k), we have

Z(j,k) =

n−1∑
m=0

ωm(j−1)ω−m(k−1)

=

n−1∑
m=0

ωm(j−k)

=

n∑
m=1

ω(m−1)(j−k)

This becomes a geometric series with r = ωj−k. When j = k, Z = n, which is the term for the entries on the diagonal
of the matrix.
When j 6= k

n∑
m=1

ω(m−1)(j−k) =
1− (ω(j−k))n

1− ω(j−k)

=
1− ωn(j−k)

1− ω(j−k)

ω = e2πi/n

Z(j,k) =
1− e2(j−k)πi

1− e2(j−k)πi/n

e2(j−k)πi = cos(2(j − k)π) + i sin(2(j − k)π)

= 1 + i0

= 1

1− e2(j−k)πi

1− e2(j−k)πi/n
=

0

1− e2(j−k)πi/n
∴ Z(j,k) = 0, j 6= k
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Thus

Mn(ω)Mn(ω−1) = nIn

Mn(ω)
1

n
Mn(ω−1) = In

∴Mn(ω)−1 =
1

n
Mn(ω−1)
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Matrix Form FFT

Mn(ω) =


1 1 1 . . . 1
1 ω ω2 . . . ω(n−1)

...
...

...
. . .

...
1 ω(n−1) ω2(n−1) . . . ω(n−1)(n−1)

 =
[
ωjk
]

First, let’s split the matrix where the even index columns 2k are on the left side and the odd index columns (2k+1)
are on the right side, 0 ≤ k ≤ n/2.

1 1 1 . . . 1
1 ω2 . . . ω1 ω3 . . .
...

...
...

. . .
...

...
1 ω2(n−1) . . . ω(n−1) ω3(n−1) . . .

 =
[
ω−2jk ω−j−2jk

]
=
[
ω−2jk ω−j · ω−2jk

]

Since the column range k has decreased by a half, each element ωjk increases to ω2jk. For each k, the difference
between the even column and the odd column is by a multiplicative factor of ωj . Thus we multiply the even column
elements by ωj to obtain the odd column elements.

Now, lets split the matrix up and bottom. Row index is now 0 ≤ j ≤ n/2. Upper portion row indices are j. Lower
portion row indices are j + n/2.

By decreasing the domain of j by a half, the difference between the lower right half and the upper right half is
j = n/2. Thus the difference is a multiplicative factor of ωn/2, which is −1 as shown below.

ωn = (e2πi/n)n

= e2πi

= cos 2π + i sin 2π

= 1

ωkn = e2kπi

= cos 2kπ + i sin 2kπ

= 1

ωn/2 = (e2πi/n)n/2

= eπi

= cosπ + i sinπ

= −1

ωkn/2 = ekπi

= cos kπ + i sin kπ

= −1
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Take j = 1 for example, we set the LHS as −1· upper right elements, and set RHS as lower right elements.

−1(ω · ω2k) = ω(1+n/2) · ω2(1+n/2)k

−1(ω · ω2k) = ω1+n/2 · ω(2+n)k

−1(ω · ω2k) = ω · ωn/2 · ω2k · ωkn

−1(ω · ω2k) = −1 · ω · ω2k

Thus to obtain the lower right half elements, we multiply the upper right half elements by ωn/2 = −1.
Similarly, we can see that the multiplicative difference of the upper left elements and the lower left elements is only 1.
Using the j = 1 example.

ω2juk = ω2k

ω2jlk = ω2(1+n/2)k

= ω(n+2)k

= ωkn · ω2k

= 1 · ω2k

= ω2juk

With the multiplicative factor between the upper left and lower left being 1, we can leave as is.
1 1 1 . . . 1
1 ω2 . . . ω ω3 . . .
...

...
...

. . .
...

...
1 ω2(n−1) . . . ω(n−1) ω3(n−1) . . .

 =

[
ω2jk ωj · ω2jk

ω2jk −ωj · ω2jk

]

With all four corners sharing elements ω2jk, such that 0 ≤ j ≤ n/2 and 0 ≤ k ≤ n/2, we have a n/2 x n/2 matrix.
1 1 1 . . . 1
1 ω2 ω4 . . . ω(n−2)

...
...

...
. . .

...
1 ωn ω2n . . . ω(n−2)(n−2)

 = Mn/2(ω)

∴Mn(ω) =

[
Mn/2(ω) ωjMn/2(ω)
Mn/2(ω) −ωjMn/2(ω)

]
1

1Diagrams from Course Textbook, Algorithms by Dasgupta, Papadimitriou, and Vazirani
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