CS 170 Spring 2017 — Discussion 6

Raymond Chan

Set Cover

In the set cover problem, we have a set B of n elements and subsets Si,...,S5,, € B. The goal is to find a selection
fo S; whose union is B while minimizing the number of sets picked. Since finding the optimal solution takes a very
inefficient running time, we want to have a polynomial time algorithm that approximates the optimal solution. Let’s
consider the following optimal algorithm.

procedure GREEDY-SET-COVER(B, S1, ..., Sm)
while there are still uncovered elements do
Pick S; with the largest number of uncovered elements.

If we have n elements and k optimal sets to cover all elements, we want to show that the number of sets from
GREEDY is at most klnn.
Let U(S:) be the number of uncovered elements from set S; at the ¢-th iteration. We know that

U(S1) >

By GREEDY, U(S;) <U(S1),i€{2...}

If U(S1) = %, then all k optimal sets have 7 uncovered elements.

Suppose for the sake of contradiction that U(Sy) < %, then for i € {2...k}, U(S;) < U(S1) < . If so, we cannot
possibly cover all n elements with %k sets. If we can, then there must be a set whose number of uncovered elements is
> 7 and we would have picked this instead of 5.

Let’s look at the following example.

N N [A

Al[. [] [] [] [] [] .}

Ao[. ([[([([([.j
T C AN J

By B By

We see that the optimal solution is to pick Ag and A; as they both cover 7 elements each. However, GREEDY will
choose By, By, By in that order. At the beginning, we have 14 elements and Bs has 7 uncovered elements whereas A
and A; only have 7 uncovered elements. At the second iteration, B; has 4 uncovered elements whereas Ay and A;
have 3 each. Finally By have 2 uncovered elements whereas Ay and A; have 1 each.

(N N[A\

Al[o ° ° ° o o o}

Ao[o e o |0 o o o}

\ J /o J J

BO Bl B3 B4

Now suppose we split Bs into By. U(B3) =6 < 12—4 = 7. But we wouldn’t have picked it as both Ay and A; have 7
uncovered elements and we would have pick one of those in the first iteration.

Currently we have U(S1) > . Let’s define n; as the number of remaining elements after ¢ iterations. ng = n.

n 1
nlznofU(Sl)gnof%:no(le)

With n; remaining elements, we could have k — 1 optimal elements that cover them all. Or all of them need still be
covered by k optimal elemenWith n; remaining elements, we could have k — 1 optimal elements that cover them all.
Or all of them need still be covered by k optimal elements.

n n
ngznl—U(Sg)gnl—ﬁ§n1—?1:n1(1—7)

So after some t iterations, we have

nep1 <ng — % <n(1l— %)Hl
Generalizing this, we have
1.t
ng < n(l — E)

Now we want to find how many iterations or sets does it take for us to reach less than 1 remaining number of elements.

1t
ntgn(lf%) <1

We want to make use of the following inequality

l—ax<e™ Vr equaltyiff x =1

t>klnn
Since is takes more than kInn iterations, lets find out by how much more. Set t = klnn

_ ne—lnn _ nn—lne —n-=1
n

_kinn
ne k

|+

= ne

Thus we need 1 more iteration to get no more remaining elements.
GREEDY will need klnn + 1 sets, which is O(klnn).

