
CS 170 Spring 2017 − Discussion 6

Raymond Chan

Set Cover

In the set cover problem, we have a set B of n elements and subsets S1, . . . , Sm ⊆ B. The goal is to find a selection
fo Si whose union is B while minimizing the number of sets picked. Since finding the optimal solution takes a very
inefficient running time, we want to have a polynomial time algorithm that approximates the optimal solution. Let’s
consider the following optimal algorithm.

procedure GREEDY-SET-COVER(B,S1, . . . , Sm)
while there are still uncovered elements do

Pick Si with the largest number of uncovered elements.

If we have n elements and k optimal sets to cover all elements, we want to show that the number of sets from
GREEDY is at most k lnn.
Let U(St) be the number of uncovered elements from set St at the t-th iteration. We know that

U(S1) ≥ n

k

By GREEDY, U(Si) ≤ U(S1), i ∈ {2 . . . }
If U(S1) = n

k , then all k optimal sets have n
k uncovered elements.

Suppose for the sake of contradiction that U(S1) < n
k , then for i ∈ {2 . . . k}, U(Si) < U(S1) < n

k . If so, we cannot
possibly cover all n elements with k sets. If we can, then there must be a set whose number of uncovered elements is
> n

k and we would have picked this instead of S1.

Let’s look at the following example.

A0

A1

B0 B1 B2

We see that the optimal solution is to pick A0 and A1 as they both cover 7 elements each. However, GREEDY will
choose B2, B1, B0 in that order. At the beginning, we have 14 elements and B2 has 7 uncovered elements whereas A0

and A1 only have 7 uncovered elements. At the second iteration, B1 has 4 uncovered elements whereas A0 and A1

have 3 each. Finally B0 have 2 uncovered elements whereas A0 and A1 have 1 each.

A0

A1

B0 B1 B3 B4

Now suppose we split B3 into B4. U(B3) = 6 < 14
2 = 7. But we wouldn’t have picked it as both A0 and A1 have 7

uncovered elements and we would have pick one of those in the first iteration.

Currently we have U(S1) ≥ n
k . Let’s define nt as the number of remaining elements after t iterations. n0 = n.

n1 = n0 − U(S1) ≤ n0 −
n0

k
= n0

(
1− 1

k

)

1



With n1 remaining elements, we could have k − 1 optimal elements that cover them all. Or all of them need still be
covered by k optimal elemenWith n1 remaining elements, we could have k − 1 optimal elements that cover them all.
Or all of them need still be covered by k optimal elements.

n2 = n1 − U(S2) ≤ n1 −
n1

k − 1
≤ n1 −

n1

k
= n1

(
1− 1

k

)
≤ n0

(
1− 1

k

)(
1− 1

k

)
= n0

(
1− 1

k

)2
So after some t iterations, we have

nt+1 ≤ nt −
nt

k
≤ n0

(
1− 1

k

)t+1

Generalizing this, we have

nt ≤ n
(
1− 1

k

)t
Now we want to find how many iterations or sets does it take for us to reach less than 1 remaining number of elements.

nt ≤ n
(
1− 1

k

)t
< 1

We want to make use of the following inequality

1− x ≤ e−x ∀x equalty iff x = 1

ne−
t
k < 1

e−
t
k <

1

n

ln e−
t
k < ln 1− lnn

− t

k
< − lnn

t

k
> lnn

t > k lnn

Since is takes more than k lnn iterations, lets find out by how much more. Set t = k lnn

ne−
t
k = ne−

k lnn
k = ne− lnn = nn− ln e = n

1

n
= 1

Thus we need 1 more iteration to get no more remaining elements.
GREEDY will need k lnn + 1 sets, which is O(k lnn).

2


