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Set Cover

In the set cover problem, we have a set B of n elements and subsets S1, . . . , Sm ⊆ B. The goal is to find a selection
fo Si whose union is B while minimizing the number of sets picked. Since finding the optimal solution takes a very
inefficient running time, we want to have a polynomial time algorithm that approximates the optimal solution. Let’s
consider the following optimal algorithm.

procedure GREEDY-SET-COVER(B,S1, . . . , Sm)
while there are still uncovered elements do

Pick Si with the largest number of uncovered elements.

If we have n elements and k optimal sets to cover all elements, we want to show that the number of sets from
GREEDY is at most k lnn.
Let U(St) be the number of uncovered elements from set St at the t-th iteration. We know that

U(S1) ≥ n

k

By GREEDY, U(Si) ≤ U(S1), i ∈ {2 . . . }
If U(S1) = n

k , then all k optimal sets have n
k uncovered elements.

Suppose for the sake of contradiction that U(S1) < n
k , then for i ∈ {2 . . . k}, U(Si) < U(S1) < n

k . If so, we cannot
possibly cover all n elements with k sets. If we can, then there must be a set whose number of uncovered elements is
> n

k and we would have picked this instead of S1.

Let’s look at the following example.
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We see that the optimal solution is to pick A0 and A1 as they both cover 7 elements each. However, GREEDY will
choose B2, B1, B0 in that order. At the beginning, we have 14 elements and B2 has 7 uncovered elements whereas A0

and A1 only have 7 uncovered elements. At the second iteration, B1 has 4 uncovered elements whereas A0 and A1

have 3 each. Finally B0 have 2 uncovered elements whereas A0 and A1 have 1 each.
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Now suppose we split B3 into B4. U(B3) = 6 < 14
2 = 7. But we wouldn’t have picked it as both A0 and A1 have 7

uncovered elements and we would have pick one of those in the first iteration.

Currently we have U(S1) ≥ n
k . Let’s define nt as the number of remaining elements after t iterations. n0 = n.

n1 = n0 − U(S1) ≤ n0 −
n0

k
= n0

(
1− 1

k

)

1



With n1 remaining elements, we could have k − 1 optimal elements that cover them all. Or all of them need still be
covered by k optimal elemenWith n1 remaining elements, we could have k − 1 optimal elements that cover them all.
Or all of them need still be covered by k optimal elements.

n2 = n1 − U(S2) ≤ n1 −
n1

k − 1
≤ n1 −

n1

k
= n1

(
1− 1

k

)
≤ n0

(
1− 1

k

)(
1− 1

k

)
= n0

(
1− 1

k

)2
So after some t iterations, we have

nt+1 ≤ nt −
nt

k
≤ n0

(
1− 1

k

)t+1

Generalizing this, we have

nt ≤ n
(
1− 1

k

)t
Now we want to find how many iterations or sets does it take for us to reach less than 1 remaining number of elements.

nt ≤ n
(
1− 1

k

)t
< 1

We want to make use of the following inequality

1− x ≤ e−x ∀x equalty iff x = 1

ne−
t
k < 1

e−
t
k <

1

n

ln e−
t
k < ln 1− lnn

− t

k
< − lnn

t

k
> lnn

t > k lnn

Since is takes more than k lnn iterations, lets find out by how much more. Set t = k lnn

ne−
t
k = ne−

k lnn
k = ne− lnn = nn− ln e = n

1

n
= 1

Thus we need 1 more iteration to get no more remaining elements.
GREEDY will need k lnn + 1 sets, which is O(k lnn).
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